pmlpp/mlpp/mann/mann.cpp

197 lines
8.4 KiB
C++
Raw Normal View History

//
// MANN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-24 18:12:23 +01:00
#include "mann.h"
#include "../activation/activation.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include "../cost/cost.h"
#include <iostream>
namespace MLPP {
MANN::MANN(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet)
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_output(outputSet[0].size())
{
}
MANN::~MANN(){
delete outputLayer;
}
std::vector<std::vector<double>> MANN::modelSetTest(std::vector<std::vector<double>> X){
if(!network.empty()){
network[0].input = X;
network[0].forwardPass();
for(int i = 1; i < network.size(); i++){
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
}
else {
outputLayer->input = X;
}
outputLayer->forwardPass();
return outputLayer->a;
}
std::vector<double> MANN::modelTest(std::vector<double> x){
if(!network.empty()){
network[0].Test(x);
for(int i = 1; i < network.size(); i++){
network[i].Test(network[i - 1].a_test);
}
outputLayer->Test(network[network.size() - 1].a_test);
}
else{
outputLayer->Test(x);
}
return outputLayer->a_test;
}
void MANN::gradientDescent(double learning_rate, int max_epoch, bool UI){
class Cost cost;
Activation avn;
LinAlg alg;
Reg regularization;
double cost_prev = 0;
int epoch = 1;
forwardPass();
while(true){
cost_prev = Cost(y_hat, outputSet);
if(outputLayer->activation == "Softmax"){
outputLayer->delta = alg.subtraction(y_hat, outputSet);
}
else{
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
}
std::vector<std::vector<double>> outputWGrad = alg.matmult(alg.transpose(outputLayer->input), outputLayer->delta);
outputLayer->weights = alg.subtraction(outputLayer->weights, alg.scalarMultiply(learning_rate/n, outputWGrad));
outputLayer->weights = regularization.regWeights(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
outputLayer->bias = alg.subtractMatrixRows(outputLayer->bias, alg.scalarMultiply(learning_rate/n, outputLayer->delta));
if(!network.empty()){
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.matmult(outputLayer->delta, alg.transpose(outputLayer->weights)), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, alg.scalarMultiply(learning_rate/n, hiddenLayerWGrad));
network[network.size() - 1].weights = regularization.regWeights(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg);
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate/n, network[network.size() - 1].delta));
for(int i = network.size() - 2; i >= 0; i--){
auto hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, network[i + 1].weights), (avn.*hiddenLayerAvn)(network[i].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
network[i].weights = alg.subtraction(network[i].weights, alg.scalarMultiply(learning_rate/n, hiddenLayerWGrad));
network[i].weights = regularization.regWeights(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate/n, network[i].delta));
}
}
forwardPass();
if(UI) {
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
Utilities::UI(outputLayer->weights, outputLayer->bias);
if(!network.empty()){
std::cout << "Layer " << network.size() << ": " << std::endl;
for(int i = network.size() - 1; i >= 0; i--){
std::cout << "Layer " << i + 1 << ": " << std::endl;
Utilities::UI(network[i].weights, network[i].bias);
}
}
}
epoch++;
if(epoch > max_epoch) { break; }
}
}
double MANN::score(){
Utilities util;
forwardPass();
return util.performance(y_hat, outputSet);
}
void MANN::save(std::string fileName){
Utilities util;
if(!network.empty()){
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
for(int i = 1; i < network.size(); i++){
util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1);
}
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1);
}
else{
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1);
}
}
void MANN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha){
if(network.empty()){
network.push_back(HiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha));
network[0].forwardPass();
}
else{
network.push_back(HiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
network[network.size() - 1].forwardPass();
}
}
void MANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha){
if(!network.empty()){
outputLayer = new MultiOutputLayer(n_output, network[0].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
}
else{
outputLayer = new MultiOutputLayer(n_output, k, activation, loss, inputSet, weightInit, reg, lambda, alpha);
}
}
double MANN::Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y){
Reg regularization;
class Cost cost;
double totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
if(!network.empty()){
for(int i = 0; i < network.size() - 1; i++){
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
}
}
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
}
void MANN::forwardPass(){
if(!network.empty()){
network[0].input = inputSet;
network[0].forwardPass();
for(int i = 1; i < network.size(); i++){
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
}
else{
outputLayer->input = inputSet;
}
outputLayer->forwardPass();
y_hat = outputLayer->a;
}
}