pmlpp/mlpp/dual_svc/dual_svc.cpp

241 lines
8.1 KiB
C++
Raw Normal View History

//
// DualSVC.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
2023-01-24 18:12:23 +01:00
#include "dual_svc.h"
#include "../activation/activation.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include "../cost/cost.h"
#include <iostream>
#include <random>
namespace MLPP{
DualSVC::DualSVC(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, double C, std::string kernel)
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C), kernel(kernel)
{
y_hat.resize(n);
bias = Utilities::biasInitialization();
alpha = Utilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers.
K = kernelFunction(inputSet, inputSet, kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated.
}
std::vector<double> DualSVC::modelSetTest(std::vector<std::vector<double>> X){
return Evaluate(X);
}
double DualSVC::modelTest(std::vector<double> x){
return Evaluate(x);
}
void DualSVC::gradientDescent(double learning_rate, int max_epoch, bool UI){
class Cost cost;
Activation avn;
LinAlg alg;
Reg regularization;
double cost_prev = 0;
int epoch = 1;
forwardPass();
while(true){
cost_prev = Cost(alpha, inputSet, outputSet);
alpha = alg.subtraction(alpha, alg.scalarMultiply(learning_rate, cost.dualFormSVMDeriv(alpha, inputSet, outputSet)));
alphaProjection();
// Calculating the bias
double biasGradient = 0;
for(int i = 0; i < alpha.size(); i++){
double sum = 0;
if(alpha[i] < C && alpha[i] > 0){
for(int j = 0; j < alpha.size(); j++){
if(alpha[j] > 0){
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations.
}
}
}
biasGradient = (1 - outputSet[i] * sum) / outputSet[i];
break;
}
bias -= biasGradient * learning_rate;
forwardPass();
// UI PORTION
if(UI) {
Utilities::CostInfo(epoch, cost_prev, Cost(alpha, inputSet, outputSet));
Utilities::UI(alpha, bias);
std::cout << score() << std::endl; // TO DO: DELETE THIS.
}
epoch++;
if(epoch > max_epoch) { break; }
}
}
// void DualSVC::SGD(double learning_rate, int max_epoch, bool UI){
// class Cost cost;
// Activation avn;
// LinAlg alg;
// Reg regularization;
// double cost_prev = 0;
// int epoch = 1;
// while(true){
// std::random_device rd;
// std::default_random_engine generator(rd());
// std::uniform_int_distribution<int> distribution(0, int(n - 1));
// int outputIndex = distribution(generator);
// cost_prev = Cost(alpha, inputSet[outputIndex], outputSet[outputIndex]);
// // Bias updation
// bias -= learning_rate * costDeriv;
// y_hat = Evaluate({inputSet[outputIndex]});
// if(UI) {
// Utilities::CostInfo(epoch, cost_prev, Cost(alpha));
// Utilities::UI(weights, bias);
// }
// epoch++;
// if(epoch > max_epoch) { break; }
// }
// forwardPass();
// }
// void DualSVC::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
// class Cost cost;
// Activation avn;
// LinAlg alg;
// Reg regularization;
// double cost_prev = 0;
// int epoch = 1;
// // Creating the mini-batches
// int n_mini_batch = n/mini_batch_size;
// auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
// while(true){
// for(int i = 0; i < n_mini_batch; i++){
// std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
// std::vector<double> z = propagate(inputMiniBatches[i]);
// cost_prev = Cost(z, outputMiniBatches[i], weights, C);
// // Calculating the weight gradients
// weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C))));
// weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge");
// // Calculating the bias gradients
// bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n;
// forwardPass();
// y_hat = Evaluate(inputMiniBatches[i]);
// if(UI) {
// Utilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C));
// Utilities::UI(weights, bias);
// }
// }
// epoch++;
// if(epoch > max_epoch) { break; }
// }
// forwardPass();
// }
double DualSVC::score(){
Utilities util;
return util.performance(y_hat, outputSet);
}
void DualSVC::save(std::string fileName){
Utilities util;
util.saveParameters(fileName, alpha, bias);
}
double DualSVC::Cost(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y){
class Cost cost;
return cost.dualFormSVM(alpha, X, y);
}
std::vector<double> DualSVC::Evaluate(std::vector<std::vector<double>> X){
Activation avn;
return avn.sign(propagate(X));
}
std::vector<double> DualSVC::propagate(std::vector<std::vector<double>> X){
LinAlg alg;
std::vector<double> z;
for(int i = 0; i < X.size(); i++){
double sum = 0;
for(int j = 0; j < alpha.size(); j++){
if(alpha[j] != 0){
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
}
}
sum += bias;
z.push_back(sum);
}
return z;
}
double DualSVC::Evaluate(std::vector<double> x){
Activation avn;
return avn.sign(propagate(x));
}
double DualSVC::propagate(std::vector<double> x){
LinAlg alg;
double z = 0;
for(int j = 0; j < alpha.size(); j++){
if(alpha[j] != 0){
z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
}
}
z += bias;
return z;
}
void DualSVC::forwardPass(){
LinAlg alg;
Activation avn;
z = propagate(inputSet);
y_hat = avn.sign(z);
}
void DualSVC::alphaProjection(){
for(int i = 0; i < alpha.size(); i++){
if(alpha[i] > C){
alpha[i] = C;
}
else if(alpha[i] < 0){
alpha[i] = 0;
}
}
}
double DualSVC::kernelFunction(std::vector<double> u, std::vector<double> v, std::string kernel){
LinAlg alg;
if(kernel == "Linear"){
return alg.dot(u, v);
} // warning: non-void function does not return a value in all control paths [-Wreturn-type]
}
std::vector<std::vector<double>> DualSVC::kernelFunction(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B, std::string kernel){
LinAlg alg;
if(kernel == "Linear"){
return alg.matmult(inputSet, alg.transpose(inputSet));
} // warning: non-void function does not return a value in all control paths [-Wreturn-type]
}
}