pmlpp/mlpp/mann/mann.h

51 lines
1.4 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_MANN_H
#define MLPP_MANN_H
//
// MANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
2023-01-24 18:12:23 +01:00
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-01-24 19:20:18 +01:00
2023-01-24 19:00:54 +01:00
2023-01-25 00:54:50 +01:00
class MLPPMANN {
2023-01-24 19:00:54 +01:00
public:
2023-01-27 13:01:16 +01:00
MLPPMANN(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet);
2023-01-25 00:54:50 +01:00
~MLPPMANN();
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
std::vector<real_t> modelTest(std::vector<real_t> x);
2023-02-04 13:59:26 +01:00
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
2023-01-27 13:01:16 +01:00
real_t score();
2023-01-24 19:00:54 +01:00
void save(std::string fileName);
2023-01-27 13:01:16 +01:00
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
2023-01-24 19:00:54 +01:00
private:
2023-01-27 13:01:16 +01:00
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
2023-01-24 19:00:54 +01:00
void forwardPass();
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> inputSet;
std::vector<std::vector<real_t>> outputSet;
std::vector<std::vector<real_t>> y_hat;
2023-01-24 19:00:54 +01:00
std::vector<MLPPOldHiddenLayer> network;
MLPPOldMultiOutputLayer *outputLayer;
2023-01-24 19:00:54 +01:00
int n;
int k;
int n_output;
};
2023-01-24 19:20:18 +01:00
#endif /* MANN_hpp */