pmlpp/mlpp/mann/mann.h

49 lines
1.3 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_MANN_H
#define MLPP_MANN_H
//
// MANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-24 18:12:23 +01:00
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-01-24 19:20:18 +01:00
2023-01-24 19:00:54 +01:00
2023-01-25 00:54:50 +01:00
class MLPPMANN {
2023-01-24 19:00:54 +01:00
public:
2023-01-25 00:54:50 +01:00
MLPPMANN(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet);
~MLPPMANN();
2023-01-24 19:00:54 +01:00
std::vector<std::vector<double>> modelSetTest(std::vector<std::vector<double>> X);
std::vector<double> modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
double score();
void save(std::string fileName);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
private:
double Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<std::vector<double>> outputSet;
std::vector<std::vector<double>> y_hat;
2023-01-25 00:21:31 +01:00
std::vector<MLPPHiddenLayer> network;
2023-01-25 00:54:50 +01:00
MLPPMultiOutputLayer *outputLayer;
2023-01-24 19:00:54 +01:00
int n;
int k;
int n_output;
};
2023-01-24 19:20:18 +01:00
#endif /* MANN_hpp */