pmlpp/mlpp/multi_output_layer/multi_output_layer.cpp

395 lines
14 KiB
C++
Raw Normal View History

//
// MultiOutputLayer.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-24 18:12:23 +01:00
#include "multi_output_layer.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
int MLPPMultiOutputLayer::get_n_output() {
return n_output;
}
void MLPPMultiOutputLayer::set_n_output(const int val) {
n_output = val;
}
int MLPPMultiOutputLayer::get_n_hidden() {
return n_hidden;
}
void MLPPMultiOutputLayer::set_n_hidden(const int val) {
n_hidden = val;
}
MLPPActivation::ActivationFunction MLPPMultiOutputLayer::get_activation() {
return activation;
}
void MLPPMultiOutputLayer::set_activation(const MLPPActivation::ActivationFunction val) {
activation = val;
}
MLPPCost::CostTypes MLPPMultiOutputLayer::get_cost() {
return cost;
}
void MLPPMultiOutputLayer::set_cost(const MLPPCost::CostTypes val) {
cost = val;
}
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_input() {
return input;
}
void MLPPMultiOutputLayer::set_input(const Ref<MLPPMatrix> &val) {
input = val;
}
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_weights() {
return weights;
}
void MLPPMultiOutputLayer::set_weights(const Ref<MLPPMatrix> &val) {
weights = val;
}
Ref<MLPPVector> MLPPMultiOutputLayer::get_bias() {
return bias;
}
void MLPPMultiOutputLayer::set_bias(const Ref<MLPPVector> &val) {
bias = val;
}
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_z() {
return z;
}
void MLPPMultiOutputLayer::set_z(const Ref<MLPPMatrix> &val) {
z = val;
}
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_a() {
return a;
}
void MLPPMultiOutputLayer::set_a(const Ref<MLPPMatrix> &val) {
a = val;
}
Ref<MLPPVector> MLPPMultiOutputLayer::get_z_test() {
return z_test;
}
void MLPPMultiOutputLayer::set_z_test(const Ref<MLPPVector> &val) {
z_test = val;
}
Ref<MLPPVector> MLPPMultiOutputLayer::get_a_test() {
return a_test;
}
void MLPPMultiOutputLayer::set_a_test(const Ref<MLPPVector> &val) {
a_test = val;
}
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_delta() {
return delta;
}
void MLPPMultiOutputLayer::set_delta(const Ref<MLPPMatrix> &val) {
delta = val;
}
MLPPReg::RegularizationType MLPPMultiOutputLayer::get_reg() {
return reg;
}
void MLPPMultiOutputLayer::set_reg(const MLPPReg::RegularizationType val) {
reg = val;
}
real_t MLPPMultiOutputLayer::get_lambda() {
return lambda;
}
void MLPPMultiOutputLayer::set_lambda(const real_t val) {
lambda = val;
}
real_t MLPPMultiOutputLayer::get_alpha() {
return alpha;
}
void MLPPMultiOutputLayer::set_alpha(const real_t val) {
alpha = val;
}
MLPPUtilities::WeightDistributionType MLPPMultiOutputLayer::get_weight_init() {
return weight_init;
}
void MLPPMultiOutputLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
weight_init = val;
}
void MLPPMultiOutputLayer::forward_pass() {
MLPPLinAlg alg;
MLPPActivation avn;
z = alg.mat_vec_addv(alg.matmultm(input, weights), bias);
a = avn.run_activation_norm_matrix(activation, z);
}
void MLPPMultiOutputLayer::test(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
MLPPActivation avn;
z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(weights), x), bias);
a_test = avn.run_activation_norm_vector(activation, z_test);
}
MLPPMultiOutputLayer::MLPPMultiOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
n_hidden = p_n_hidden;
activation = p_activation;
input = p_input;
// Regularization Params
reg = p_reg;
lambda = p_lambda; /* Regularization Parameter */
alpha = p_alpha; /* This is the controlling param for Elastic Net*/
weight_init = p_weight_init;
z.instance();
a.instance();
z_test.instance();
a_test.instance();
delta.instance();
weights.instance();
bias.instance();
weights->resize(Size2i(n_hidden, n_output));
bias->resize(n_output);
MLPPUtilities utils;
utils.weight_initializationm(weights, weight_init);
utils.bias_initializationv(bias);
}
MLPPMultiOutputLayer::MLPPMultiOutputLayer() {
n_hidden = 0;
activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
// Regularization Params
//reg = 0;
lambda = 0; /* Regularization Parameter */
alpha = 0; /* This is the controlling param for Elastic Net*/
weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
z.instance();
a.instance();
z_test.instance();
a_test.instance();
delta.instance();
weights.instance();
bias.instance();
}
MLPPMultiOutputLayer::~MLPPMultiOutputLayer() {
}
void MLPPMultiOutputLayer::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_n_output"), &MLPPMultiOutputLayer::get_n_output);
ClassDB::bind_method(D_METHOD("set_n_output", "val"), &MLPPMultiOutputLayer::set_n_output);
ADD_PROPERTY(PropertyInfo(Variant::INT, "n_output"), "set_n_output", "get_n_output");
ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPMultiOutputLayer::get_n_hidden);
ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPMultiOutputLayer::set_n_hidden);
ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden");
ClassDB::bind_method(D_METHOD("get_activation"), &MLPPMultiOutputLayer::get_activation);
ClassDB::bind_method(D_METHOD("set_activation", "val"), &MLPPMultiOutputLayer::set_activation);
ADD_PROPERTY(PropertyInfo(Variant::INT, "activation"), "set_activation", "get_activation");
ClassDB::bind_method(D_METHOD("get_cost"), &MLPPMultiOutputLayer::get_cost);
ClassDB::bind_method(D_METHOD("set_cost", "val"), &MLPPMultiOutputLayer::set_cost);
ADD_PROPERTY(PropertyInfo(Variant::INT, "cost"), "set_cost", "get_cost");
ClassDB::bind_method(D_METHOD("get_input"), &MLPPMultiOutputLayer::get_input);
ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPMultiOutputLayer::set_input);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input");
ClassDB::bind_method(D_METHOD("get_weights"), &MLPPMultiOutputLayer::get_weights);
ClassDB::bind_method(D_METHOD("set_weights", "val"), &MLPPMultiOutputLayer::set_weights);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_weights", "get_weights");
ClassDB::bind_method(D_METHOD("get_bias"), &MLPPMultiOutputLayer::get_bias);
ClassDB::bind_method(D_METHOD("set_bias", "val"), &MLPPMultiOutputLayer::set_bias);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "bias", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_bias", "get_bias");
ClassDB::bind_method(D_METHOD("get_z"), &MLPPMultiOutputLayer::get_z);
ClassDB::bind_method(D_METHOD("set_z", "val"), &MLPPMultiOutputLayer::set_z);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_z", "get_z");
ClassDB::bind_method(D_METHOD("get_a"), &MLPPMultiOutputLayer::get_a);
ClassDB::bind_method(D_METHOD("set_a", "val"), &MLPPMultiOutputLayer::set_a);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_a", "get_a");
ClassDB::bind_method(D_METHOD("get_z_test"), &MLPPMultiOutputLayer::get_z_test);
ClassDB::bind_method(D_METHOD("set_z_test", "val"), &MLPPMultiOutputLayer::set_z_test);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_z_test", "get_z_test");
ClassDB::bind_method(D_METHOD("get_a_test"), &MLPPMultiOutputLayer::get_a_test);
ClassDB::bind_method(D_METHOD("set_a_test", "val"), &MLPPMultiOutputLayer::set_a_test);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_a_test", "get_a_test");
ClassDB::bind_method(D_METHOD("get_delta"), &MLPPMultiOutputLayer::get_delta);
ClassDB::bind_method(D_METHOD("set_delta", "val"), &MLPPMultiOutputLayer::set_delta);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "delta", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_delta", "get_delta");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPMultiOutputLayer::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPMultiOutputLayer::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPMultiOutputLayer::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPMultiOutputLayer::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPMultiOutputLayer::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPMultiOutputLayer::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("get_weight_init"), &MLPPMultiOutputLayer::get_weight_init);
ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPMultiOutputLayer::set_weight_init);
ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init");
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPMultiOutputLayer::forward_pass);
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPMultiOutputLayer::test);
}
MLPPOldMultiOutputLayer::MLPPOldMultiOutputLayer(int p_n_output, int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
n_output = p_n_output;
n_hidden = p_n_hidden;
activation = p_activation;
cost = p_cost;
input = p_input;
weightInit = p_weightInit;
reg = p_reg;
lambda = p_lambda;
alpha = p_alpha;
2023-01-24 19:20:18 +01:00
weights = MLPPUtilities::weightInitialization(n_hidden, n_output, weightInit);
bias = MLPPUtilities::biasInitialization(n_output);
2023-01-24 19:23:30 +01:00
activation_map["Linear"] = &MLPPActivation::linear;
activationTest_map["Linear"] = &MLPPActivation::linear;
2023-01-24 19:23:30 +01:00
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
2023-01-24 19:23:30 +01:00
activation_map["Softmax"] = &MLPPActivation::softmax;
activationTest_map["Softmax"] = &MLPPActivation::softmax;
2023-01-24 19:23:30 +01:00
activation_map["Swish"] = &MLPPActivation::swish;
activationTest_map["Swish"] = &MLPPActivation::swish;
2023-01-24 19:23:30 +01:00
activation_map["Mish"] = &MLPPActivation::mish;
activationTest_map["Mish"] = &MLPPActivation::mish;
2023-01-24 19:23:30 +01:00
activation_map["SinC"] = &MLPPActivation::sinc;
activationTest_map["SinC"] = &MLPPActivation::sinc;
2023-01-24 19:23:30 +01:00
activation_map["Softplus"] = &MLPPActivation::softplus;
activationTest_map["Softplus"] = &MLPPActivation::softplus;
2023-01-24 19:23:30 +01:00
activation_map["Softsign"] = &MLPPActivation::softsign;
activationTest_map["Softsign"] = &MLPPActivation::softsign;
2023-01-24 19:23:30 +01:00
activation_map["CLogLog"] = &MLPPActivation::cloglog;
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
2023-01-24 19:23:30 +01:00
activation_map["Logit"] = &MLPPActivation::logit;
activationTest_map["Logit"] = &MLPPActivation::logit;
2023-01-24 19:23:30 +01:00
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
2023-01-24 19:23:30 +01:00
activation_map["RELU"] = &MLPPActivation::RELU;
activationTest_map["RELU"] = &MLPPActivation::RELU;
2023-01-24 19:23:30 +01:00
activation_map["GELU"] = &MLPPActivation::GELU;
activationTest_map["GELU"] = &MLPPActivation::GELU;
2023-01-24 19:23:30 +01:00
activation_map["Sign"] = &MLPPActivation::sign;
activationTest_map["Sign"] = &MLPPActivation::sign;
2023-01-24 19:23:30 +01:00
activation_map["UnitStep"] = &MLPPActivation::unitStep;
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
2023-01-24 19:23:30 +01:00
activation_map["Sinh"] = &MLPPActivation::sinh;
activationTest_map["Sinh"] = &MLPPActivation::sinh;
2023-01-24 19:23:30 +01:00
activation_map["Cosh"] = &MLPPActivation::cosh;
activationTest_map["Cosh"] = &MLPPActivation::cosh;
2023-01-24 19:23:30 +01:00
activation_map["Tanh"] = &MLPPActivation::tanh;
activationTest_map["Tanh"] = &MLPPActivation::tanh;
2023-01-24 19:23:30 +01:00
activation_map["Csch"] = &MLPPActivation::csch;
activationTest_map["Csch"] = &MLPPActivation::csch;
2023-01-24 19:23:30 +01:00
activation_map["Sech"] = &MLPPActivation::sech;
activationTest_map["Sech"] = &MLPPActivation::sech;
2023-01-24 19:23:30 +01:00
activation_map["Coth"] = &MLPPActivation::coth;
activationTest_map["Coth"] = &MLPPActivation::coth;
2023-01-24 19:23:30 +01:00
activation_map["Arsinh"] = &MLPPActivation::arsinh;
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
2023-01-24 19:23:30 +01:00
activation_map["Arcosh"] = &MLPPActivation::arcosh;
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
2023-01-24 19:23:30 +01:00
activation_map["Artanh"] = &MLPPActivation::artanh;
activationTest_map["Artanh"] = &MLPPActivation::artanh;
2023-01-24 19:23:30 +01:00
activation_map["Arcsch"] = &MLPPActivation::arcsch;
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
2023-01-24 19:23:30 +01:00
activation_map["Arsech"] = &MLPPActivation::arsech;
activationTest_map["Arsech"] = &MLPPActivation::arsech;
2023-01-24 19:23:30 +01:00
activation_map["Arcoth"] = &MLPPActivation::arcoth;
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
2023-01-24 19:37:08 +01:00
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
cost_map["MSE"] = &MLPPCost::MSE;
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
cost_map["RMSE"] = &MLPPCost::RMSE;
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
cost_map["MAE"] = &MLPPCost::MAE;
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
cost_map["MBE"] = &MLPPCost::MBE;
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
cost_map["LogLoss"] = &MLPPCost::LogLoss;
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
2023-01-24 19:00:54 +01:00
}
void MLPPOldMultiOutputLayer::forwardPass() {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
a = (avn.*activation_map[activation])(z, false);
2023-01-24 19:00:54 +01:00
}
void MLPPOldMultiOutputLayer::Test(std::vector<real_t> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
a_test = (avn.*activationTest_map[activation])(z_test, false);
2023-01-24 19:00:54 +01:00
}