mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-06 17:09:36 +01:00
180 lines
3.8 KiB
C++
180 lines
3.8 KiB
C++
|
//
|
||
|
// BernoulliNB.cpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 1/17/21.
|
||
|
//
|
||
|
|
||
|
#include "bernoulli_nb_old.h"
|
||
|
#include "../data/data.h"
|
||
|
#include "../lin_alg/lin_alg.h"
|
||
|
#include "../utilities/utilities.h"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <random>
|
||
|
|
||
|
MLPPBernoulliNBOld::MLPPBernoulliNBOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet) {
|
||
|
inputSet = p_inputSet;
|
||
|
outputSet = p_outputSet;
|
||
|
class_num = 2;
|
||
|
|
||
|
y_hat.resize(outputSet.size());
|
||
|
Evaluate();
|
||
|
}
|
||
|
|
||
|
std::vector<real_t> MLPPBernoulliNBOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||
|
std::vector<real_t> y_hat;
|
||
|
for (uint32_t i = 0; i < X.size(); i++) {
|
||
|
y_hat.push_back(modelTest(X[i]));
|
||
|
}
|
||
|
return y_hat;
|
||
|
}
|
||
|
|
||
|
real_t MLPPBernoulliNBOld::modelTest(std::vector<real_t> x) {
|
||
|
real_t score_0 = 1;
|
||
|
real_t score_1 = 1;
|
||
|
|
||
|
std::vector<int> foundIndices;
|
||
|
|
||
|
for (uint32_t j = 0; j < x.size(); j++) {
|
||
|
for (uint32_t k = 0; k < vocab.size(); k++) {
|
||
|
if (x[j] == vocab[k]) {
|
||
|
score_0 *= theta[0][vocab[k]];
|
||
|
score_1 *= theta[1][vocab[k]];
|
||
|
|
||
|
foundIndices.push_back(k);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (uint32_t i = 0; i < vocab.size(); i++) {
|
||
|
bool found = false;
|
||
|
for (uint32_t j = 0; j < foundIndices.size(); j++) {
|
||
|
if (vocab[i] == vocab[foundIndices[j]]) {
|
||
|
found = true;
|
||
|
}
|
||
|
}
|
||
|
if (!found) {
|
||
|
score_0 *= 1 - theta[0][vocab[i]];
|
||
|
score_1 *= 1 - theta[1][vocab[i]];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
score_0 *= prior_0;
|
||
|
score_1 *= prior_1;
|
||
|
|
||
|
// Assigning the traning example to a class
|
||
|
|
||
|
if (score_0 > score_1) {
|
||
|
return 0;
|
||
|
} else {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
real_t MLPPBernoulliNBOld::score() {
|
||
|
MLPPUtilities util;
|
||
|
return util.performance(y_hat, outputSet);
|
||
|
}
|
||
|
|
||
|
void MLPPBernoulliNBOld::computeVocab() {
|
||
|
MLPPLinAlg alg;
|
||
|
MLPPData data;
|
||
|
vocab = data.vecToSet<real_t>(alg.flatten(inputSet));
|
||
|
}
|
||
|
|
||
|
void MLPPBernoulliNBOld::computeTheta() {
|
||
|
// Resizing theta for the sake of ease & proper access of the elements.
|
||
|
theta.resize(class_num);
|
||
|
|
||
|
// Setting all values in the hasmap by default to 0.
|
||
|
for (int i = class_num - 1; i >= 0; i--) {
|
||
|
for (uint32_t j = 0; j < vocab.size(); j++) {
|
||
|
theta[i][vocab[j]] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (uint32_t i = 0; i < inputSet.size(); i++) {
|
||
|
for (uint32_t j = 0; j < inputSet[0].size(); j++) {
|
||
|
theta[outputSet[i]][inputSet[i][j]]++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (uint32_t i = 0; i < theta.size(); i++) {
|
||
|
for (uint32_t j = 0; j < theta[i].size(); j++) {
|
||
|
if (i == 0) {
|
||
|
theta[i][j] /= prior_0 * y_hat.size();
|
||
|
} else {
|
||
|
theta[i][j] /= prior_1 * y_hat.size();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void MLPPBernoulliNBOld::Evaluate() {
|
||
|
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
||
|
// Pr(B | A) * Pr(A)
|
||
|
real_t score_0 = 1;
|
||
|
real_t score_1 = 1;
|
||
|
|
||
|
real_t sum = 0;
|
||
|
for (uint32_t ii = 0; ii < outputSet.size(); ii++) {
|
||
|
if (outputSet[ii] == 1) {
|
||
|
sum += outputSet[ii];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Easy computation of priors, i.e. Pr(C_k)
|
||
|
prior_1 = sum / y_hat.size();
|
||
|
prior_0 = 1 - prior_1;
|
||
|
|
||
|
// Evaluating Theta...
|
||
|
computeTheta();
|
||
|
|
||
|
// Evaluating the vocab set...
|
||
|
computeVocab();
|
||
|
|
||
|
std::vector<int> foundIndices;
|
||
|
|
||
|
for (uint32_t j = 0; j < inputSet.size(); j++) {
|
||
|
for (uint32_t k = 0; k < vocab.size(); k++) {
|
||
|
if (inputSet[i][j] == vocab[k]) {
|
||
|
score_0 += std::log(theta[0][vocab[k]]);
|
||
|
score_1 += std::log(theta[1][vocab[k]]);
|
||
|
|
||
|
foundIndices.push_back(k);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (uint32_t ii = 0; ii < vocab.size(); ii++) {
|
||
|
bool found = false;
|
||
|
for (uint32_t j = 0; j < foundIndices.size(); j++) {
|
||
|
if (vocab[ii] == vocab[foundIndices[j]]) {
|
||
|
found = true;
|
||
|
}
|
||
|
}
|
||
|
if (!found) {
|
||
|
score_0 += std::log(1 - theta[0][vocab[ii]]);
|
||
|
score_1 += std::log(1 - theta[1][vocab[ii]]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
score_0 += std::log(prior_0);
|
||
|
score_1 += std::log(prior_1);
|
||
|
|
||
|
score_0 = exp(score_0);
|
||
|
score_1 = exp(score_1);
|
||
|
|
||
|
std::cout << score_0 << std::endl;
|
||
|
std::cout << score_1 << std::endl;
|
||
|
|
||
|
// Assigning the traning example to a class
|
||
|
|
||
|
if (score_0 > score_1) {
|
||
|
y_hat[i] = 0;
|
||
|
} else {
|
||
|
y_hat[i] = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|