pmlpp/MLPP/kNN/kNN.cpp

87 lines
2.5 KiB
C++
Raw Normal View History

//
// kNN.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "kNN.hpp"
#include "LinAlg/LinAlg.hpp"
#include "Utilities/Utilities.hpp"
#include <iostream>
#include <map>
#include <algorithm>
namespace MLPP{
kNN::kNN(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, int k)
: inputSet(inputSet), outputSet(outputSet), k(k)
{
}
std::vector<double> kNN::modelSetTest(std::vector<std::vector<double>> X){
std::vector<double> y_hat;
for(int i = 0; i < X.size(); i++){
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
int kNN::modelTest(std::vector<double> x){
return determineClass(nearestNeighbors(x));
}
double kNN::score(){
Utilities util;
return util.performance(modelSetTest(inputSet), outputSet);
}
int kNN::determineClass(std::vector<double> knn){
std::map<int, int> class_nums;
for(int i = 0; i < outputSet.size(); i++){
class_nums[outputSet[i]] = 0;
}
for(int i = 0; i < knn.size(); i++){
for(int j = 0; j < outputSet.size(); j++){
if(knn[i] == outputSet[j]){
class_nums[outputSet[j]]++;
}
}
}
int max = class_nums[outputSet[0]];
int final_class = outputSet[0];
for(int i = 0; i < outputSet.size(); i++){
if(class_nums[outputSet[i]] > max){
max = class_nums[outputSet[i]];
}
}
for(auto [c, v] : class_nums){
if(v == max){
final_class = c;
}
}
return final_class;
}
std::vector<double> kNN::nearestNeighbors(std::vector<double> x){
LinAlg alg;
// The nearest neighbors
std::vector<double> knn;
std::vector<std::vector<double>> inputUseSet = inputSet;
//Perfom this loop unless and until all k nearest neighbors are found, appended, and returned
for(int i = 0; i < k; i++){
int neighbor = 0;
for(int j = 0; j < inputUseSet.size(); j++){
bool isNeighborNearer = alg.euclideanDistance(x, inputUseSet[j]) < alg.euclideanDistance(x, inputUseSet[neighbor]);
if(isNeighborNearer){
neighbor = j;
}
}
knn.push_back(neighbor);
inputUseSet.erase(inputUseSet.begin() + neighbor); // This is why we maintain an extra input"Use"Set
}
return knn;
}
}