// // kNN.cpp // // Created by Marc Melikyan on 10/2/20. // #include "kNN.hpp" #include "LinAlg/LinAlg.hpp" #include "Utilities/Utilities.hpp" #include #include #include namespace MLPP{ kNN::kNN(std::vector> inputSet, std::vector outputSet, int k) : inputSet(inputSet), outputSet(outputSet), k(k) { } std::vector kNN::modelSetTest(std::vector> X){ std::vector y_hat; for(int i = 0; i < X.size(); i++){ y_hat.push_back(modelTest(X[i])); } return y_hat; } int kNN::modelTest(std::vector x){ return determineClass(nearestNeighbors(x)); } double kNN::score(){ Utilities util; return util.performance(modelSetTest(inputSet), outputSet); } int kNN::determineClass(std::vector knn){ std::map class_nums; for(int i = 0; i < outputSet.size(); i++){ class_nums[outputSet[i]] = 0; } for(int i = 0; i < knn.size(); i++){ for(int j = 0; j < outputSet.size(); j++){ if(knn[i] == outputSet[j]){ class_nums[outputSet[j]]++; } } } int max = class_nums[outputSet[0]]; int final_class = outputSet[0]; for(int i = 0; i < outputSet.size(); i++){ if(class_nums[outputSet[i]] > max){ max = class_nums[outputSet[i]]; } } for(auto [c, v] : class_nums){ if(v == max){ final_class = c; } } return final_class; } std::vector kNN::nearestNeighbors(std::vector x){ LinAlg alg; // The nearest neighbors std::vector knn; std::vector> inputUseSet = inputSet; //Perfom this loop unless and until all k nearest neighbors are found, appended, and returned for(int i = 0; i < k; i++){ int neighbor = 0; for(int j = 0; j < inputUseSet.size(); j++){ bool isNeighborNearer = alg.euclideanDistance(x, inputUseSet[j]) < alg.euclideanDistance(x, inputUseSet[neighbor]); if(isNeighborNearer){ neighbor = j; } } knn.push_back(neighbor); inputUseSet.erase(inputUseSet.begin() + neighbor); // This is why we maintain an extra input"Use"Set } return knn; } }