pmlpp/mlpp/bernoulli_nb/bernoulli_nb_old.cpp

180 lines
3.8 KiB
C++
Raw Normal View History

//
// BernoulliNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "bernoulli_nb_old.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPBernoulliNBOld::MLPPBernoulliNBOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet) {
inputSet = p_inputSet;
outputSet = p_outputSet;
class_num = 2;
y_hat.resize(outputSet.size());
Evaluate();
}
std::vector<real_t> MLPPBernoulliNBOld::modelSetTest(std::vector<std::vector<real_t>> X) {
std::vector<real_t> y_hat;
for (uint32_t i = 0; i < X.size(); i++) {
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
real_t MLPPBernoulliNBOld::modelTest(std::vector<real_t> x) {
real_t score_0 = 1;
real_t score_1 = 1;
std::vector<int> foundIndices;
for (uint32_t j = 0; j < x.size(); j++) {
for (uint32_t k = 0; k < vocab.size(); k++) {
if (x[j] == vocab[k]) {
score_0 *= theta[0][vocab[k]];
score_1 *= theta[1][vocab[k]];
foundIndices.push_back(k);
}
}
}
for (uint32_t i = 0; i < vocab.size(); i++) {
bool found = false;
for (uint32_t j = 0; j < foundIndices.size(); j++) {
if (vocab[i] == vocab[foundIndices[j]]) {
found = true;
}
}
if (!found) {
score_0 *= 1 - theta[0][vocab[i]];
score_1 *= 1 - theta[1][vocab[i]];
}
}
score_0 *= prior_0;
score_1 *= prior_1;
// Assigning the traning example to a class
if (score_0 > score_1) {
return 0;
} else {
return 1;
}
}
real_t MLPPBernoulliNBOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPBernoulliNBOld::computeVocab() {
MLPPLinAlg alg;
MLPPData data;
vocab = data.vecToSet<real_t>(alg.flatten(inputSet));
}
void MLPPBernoulliNBOld::computeTheta() {
// Resizing theta for the sake of ease & proper access of the elements.
theta.resize(class_num);
// Setting all values in the hasmap by default to 0.
for (int i = class_num - 1; i >= 0; i--) {
for (uint32_t j = 0; j < vocab.size(); j++) {
theta[i][vocab[j]] = 0;
}
}
for (uint32_t i = 0; i < inputSet.size(); i++) {
for (uint32_t j = 0; j < inputSet[0].size(); j++) {
theta[outputSet[i]][inputSet[i][j]]++;
}
}
for (uint32_t i = 0; i < theta.size(); i++) {
for (uint32_t j = 0; j < theta[i].size(); j++) {
if (i == 0) {
theta[i][j] /= prior_0 * y_hat.size();
} else {
theta[i][j] /= prior_1 * y_hat.size();
}
}
}
}
void MLPPBernoulliNBOld::Evaluate() {
for (uint32_t i = 0; i < outputSet.size(); i++) {
// Pr(B | A) * Pr(A)
real_t score_0 = 1;
real_t score_1 = 1;
real_t sum = 0;
for (uint32_t ii = 0; ii < outputSet.size(); ii++) {
if (outputSet[ii] == 1) {
sum += outputSet[ii];
}
}
// Easy computation of priors, i.e. Pr(C_k)
prior_1 = sum / y_hat.size();
prior_0 = 1 - prior_1;
// Evaluating Theta...
computeTheta();
// Evaluating the vocab set...
computeVocab();
std::vector<int> foundIndices;
for (uint32_t j = 0; j < inputSet.size(); j++) {
for (uint32_t k = 0; k < vocab.size(); k++) {
if (inputSet[i][j] == vocab[k]) {
score_0 += std::log(theta[0][vocab[k]]);
score_1 += std::log(theta[1][vocab[k]]);
foundIndices.push_back(k);
}
}
}
for (uint32_t ii = 0; ii < vocab.size(); ii++) {
bool found = false;
for (uint32_t j = 0; j < foundIndices.size(); j++) {
if (vocab[ii] == vocab[foundIndices[j]]) {
found = true;
}
}
if (!found) {
score_0 += std::log(1 - theta[0][vocab[ii]]);
score_1 += std::log(1 - theta[1][vocab[ii]]);
}
}
score_0 += std::log(prior_0);
score_1 += std::log(prior_1);
score_0 = exp(score_0);
score_1 = exp(score_1);
std::cout << score_0 << std::endl;
std::cout << score_1 << std::endl;
// Assigning the traning example to a class
if (score_0 > score_1) {
y_hat[i] = 0;
} else {
y_hat[i] = 1;
}
}
}