pmlpp/mlpp/gaussian_nb/gaussian_nb.cpp

91 lines
2.5 KiB
C++
Raw Normal View History

//
// GaussianNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
2023-01-24 18:12:23 +01:00
#include "gaussian_nb.h"
#include "../lin_alg/lin_alg.h"
2023-01-24 19:00:54 +01:00
#include "../stat/stat.h"
2023-01-24 18:12:23 +01:00
#include "../utilities/utilities.h"
#include <algorithm>
2023-01-24 19:00:54 +01:00
#include <iostream>
#include <random>
2023-01-24 19:20:18 +01:00
2023-01-25 00:21:31 +01:00
MLPPGaussianNB::MLPPGaussianNB(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, int class_num) :
2023-01-24 19:00:54 +01:00
inputSet(inputSet), outputSet(outputSet), class_num(class_num) {
y_hat.resize(outputSet.size());
Evaluate();
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
}
2023-01-25 00:21:31 +01:00
std::vector<double> MLPPGaussianNB::modelSetTest(std::vector<std::vector<double>> X) {
2023-01-24 19:00:54 +01:00
std::vector<double> y_hat;
for (int i = 0; i < X.size(); i++) {
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
2023-01-25 00:21:31 +01:00
double MLPPGaussianNB::modelTest(std::vector<double> x) {
MLPPStat stat;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
double score[class_num];
double y_hat_i = 1;
for (int i = class_num - 1; i >= 0; i--) {
y_hat_i += std::log(priors[i] * (1 / sqrt(2 * M_PI * sigma[i] * sigma[i])) * exp(-(x[i] * mu[i]) * (x[i] * mu[i]) / (2 * sigma[i] * sigma[i])));
score[i] = exp(y_hat_i);
}
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double)));
}
2023-01-25 00:21:31 +01:00
double MLPPGaussianNB::score() {
MLPPUtilities util;
2023-01-24 19:00:54 +01:00
return util.performance(y_hat, outputSet);
}
2023-01-25 00:21:31 +01:00
void MLPPGaussianNB::Evaluate() {
MLPPStat stat;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
// Computing mu_k_y and sigma_k_y
mu.resize(class_num);
sigma.resize(class_num);
for (int i = class_num - 1; i >= 0; i--) {
std::vector<double> set;
for (int j = 0; j < inputSet.size(); j++) {
for (int k = 0; k < inputSet[j].size(); k++) {
if (outputSet[j] == i) {
set.push_back(inputSet[j][k]);
}
}
}
mu[i] = stat.mean(set);
sigma[i] = stat.standardDeviation(set);
}
2023-01-24 19:00:54 +01:00
// Priors
priors.resize(class_num);
for (int i = 0; i < outputSet.size(); i++) {
priors[int(outputSet[i])]++;
}
priors = alg.scalarMultiply(double(1) / double(outputSet.size()), priors);
2023-01-24 19:00:54 +01:00
for (int i = 0; i < outputSet.size(); i++) {
double score[class_num];
double y_hat_i = 1;
for (int j = class_num - 1; j >= 0; j--) {
for (int k = 0; k < inputSet[i].size(); k++) {
y_hat_i += std::log(priors[j] * (1 / sqrt(2 * M_PI * sigma[j] * sigma[j])) * exp(-(inputSet[i][k] * mu[j]) * (inputSet[i][k] * mu[j]) / (2 * sigma[j] * sigma[j])));
}
score[j] = exp(y_hat_i);
std::cout << score[j] << std::endl;
}
y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double)));
std::cout << std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(double))) << std::endl;
}
}