pmlpp/mlpp/numerical_analysis/numerical_analysis.cpp

296 lines
10 KiB
C++
Raw Normal View History

//
// NumericalAnalysis.cpp
//
// Created by Marc Melikyan on 11/13/20.
//
2023-01-24 18:12:23 +01:00
#include "numerical_analysis.h"
#include "../lin_alg/lin_alg.h"
2023-01-24 19:00:54 +01:00
#include <climits>
#include <cmath>
#include <iostream>
#include <string>
2023-01-24 19:20:18 +01:00
2023-01-24 19:00:54 +01:00
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::numDiff(double (*function)(double), double x) {
2023-01-24 19:00:54 +01:00
double eps = 1e-10;
return (function(x + eps) - function(x)) / eps; // This is just the formal def. of the derivative.
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::numDiff_2(double (*function)(double), double x) {
2023-01-24 19:00:54 +01:00
double eps = 1e-5;
return (function(x + 2 * eps) - 2 * function(x + eps) + function(x)) / (eps * eps);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::numDiff_3(double (*function)(double), double x) {
2023-01-24 19:00:54 +01:00
double eps = 1e-5;
double t1 = function(x + 3 * eps) - 2 * function(x + 2 * eps) + function(x + eps);
double t2 = function(x + 2 * eps) - 2 * function(x + eps) + function(x);
return (t1 - t2) / (eps * eps * eps);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::constantApproximation(double (*function)(double), double c) {
2023-01-24 19:00:54 +01:00
return function(c);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::linearApproximation(double (*function)(double), double c, double x) {
2023-01-24 19:00:54 +01:00
return constantApproximation(function, c) + numDiff(function, c) * (x - c);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::quadraticApproximation(double (*function)(double), double c, double x) {
2023-01-24 19:00:54 +01:00
return linearApproximation(function, c, x) + 0.5 * numDiff_2(function, c) * (x - c) * (x - c);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::cubicApproximation(double (*function)(double), double c, double x) {
2023-01-24 19:00:54 +01:00
return quadraticApproximation(function, c, x) + (1 / 6) * numDiff_3(function, c) * (x - c) * (x - c) * (x - c);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::numDiff(double (*function)(std::vector<double>), std::vector<double> x, int axis) {
2023-01-24 19:00:54 +01:00
// For multivariable function analysis.
// This will be used for calculating Jacobian vectors.
// Diffrentiate with respect to indicated axis. (0, 1, 2 ...)
double eps = 1e-10;
std::vector<double> x_eps = x;
x_eps[axis] += eps;
return (function(x_eps) - function(x)) / eps;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::numDiff_2(double (*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2) {
2023-01-24 19:00:54 +01:00
//For Hessians.
double eps = 1e-5;
std::vector<double> x_pp = x;
x_pp[axis1] += eps;
x_pp[axis2] += eps;
std::vector<double> x_np = x;
x_np[axis2] += eps;
std::vector<double> x_pn = x;
x_pn[axis1] += eps;
return (function(x_pp) - function(x_np) - function(x_pn) + function(x)) / (eps * eps);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::numDiff_3(double (*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2, int axis3) {
2023-01-24 19:00:54 +01:00
// For third order derivative tensors.
// NOTE: Approximations do not appear to be accurate for sinusodial functions...
// Should revisit this later.
double eps = INT_MAX;
std::vector<double> x_ppp = x;
x_ppp[axis1] += eps;
x_ppp[axis2] += eps;
x_ppp[axis3] += eps;
std::vector<double> x_npp = x;
x_npp[axis2] += eps;
x_npp[axis3] += eps;
std::vector<double> x_pnp = x;
x_pnp[axis1] += eps;
x_pnp[axis3] += eps;
std::vector<double> x_nnp = x;
x_nnp[axis3] += eps;
std::vector<double> x_ppn = x;
x_ppn[axis1] += eps;
x_ppn[axis2] += eps;
std::vector<double> x_npn = x;
x_npn[axis2] += eps;
std::vector<double> x_pnn = x;
x_pnn[axis1] += eps;
double thirdAxis = function(x_ppp) - function(x_npp) - function(x_pnp) + function(x_nnp);
double noThirdAxis = function(x_ppn) - function(x_npn) - function(x_pnn) + function(x);
return (thirdAxis - noThirdAxis) / (eps * eps * eps);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::newtonRaphsonMethod(double (*function)(double), double x_0, double epoch_num) {
2023-01-24 19:00:54 +01:00
double x = x_0;
for (int i = 0; i < epoch_num; i++) {
x -= function(x) / numDiff(function, x);
}
return x;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::halleyMethod(double (*function)(double), double x_0, double epoch_num) {
2023-01-24 19:00:54 +01:00
double x = x_0;
for (int i = 0; i < epoch_num; i++) {
x -= ((2 * function(x) * numDiff(function, x)) / (2 * numDiff(function, x) * numDiff(function, x) - function(x) * numDiff_2(function, x)));
}
return x;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::invQuadraticInterpolation(double (*function)(double), std::vector<double> x_0, double epoch_num) {
2023-01-24 19:00:54 +01:00
double x = 0;
std::vector<double> currentThree = x_0;
for (int i = 0; i < epoch_num; i++) {
double t1 = ((function(currentThree[1]) * function(currentThree[2])) / ((function(currentThree[0]) - function(currentThree[1])) * (function(currentThree[0]) - function(currentThree[2])))) * currentThree[0];
double t2 = ((function(currentThree[0]) * function(currentThree[2])) / ((function(currentThree[1]) - function(currentThree[0])) * (function(currentThree[1]) - function(currentThree[2])))) * currentThree[1];
double t3 = ((function(currentThree[0]) * function(currentThree[1])) / ((function(currentThree[2]) - function(currentThree[0])) * (function(currentThree[2]) - function(currentThree[1])))) * currentThree[2];
x = t1 + t2 + t3;
currentThree.erase(currentThree.begin());
currentThree.push_back(x);
}
return x;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::eulerianMethod(double (*derivative)(double), std::vector<double> q_0, double p, double h) {
2023-01-24 19:00:54 +01:00
double max_epoch = (p - q_0[0]) / h;
double x = q_0[0];
double y = q_0[1];
for (int i = 0; i < max_epoch; i++) {
y = y + h * derivative(x);
x += h;
}
return y;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::eulerianMethod(double (*derivative)(std::vector<double>), std::vector<double> q_0, double p, double h) {
2023-01-24 19:00:54 +01:00
double max_epoch = (p - q_0[0]) / h;
double x = q_0[0];
double y = q_0[1];
for (int i = 0; i < max_epoch; i++) {
y = y + h * derivative({ x, y });
x += h;
}
return y;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::growthMethod(double C, double k, double t) {
2023-01-24 19:00:54 +01:00
/*
dP/dt = kP
dP/P = kdt
integral(1/P)dP = integral(k) dt
ln|P| = kt + C_initial
|P| = e^(kt + C_initial)
|P| = e^(C_initial) * e^(kt)
P = +/- e^(C_initial) * e^(kt)
P = C * e^(kt)
*/
// auto growthFunction = [&C, &k](double t) { return C * exp(k * t); };
return C * std::exp(k * t);
}
2023-01-25 00:54:50 +01:00
std::vector<double> MLPPNumericalAnalysis::jacobian(double (*function)(std::vector<double>), std::vector<double> x) {
2023-01-24 19:00:54 +01:00
std::vector<double> jacobian;
jacobian.resize(x.size());
for (int i = 0; i < jacobian.size(); i++) {
jacobian[i] = numDiff(function, x, i); // Derivative w.r.t axis i evaluated at x. For all x_i.
}
return jacobian;
}
2023-01-25 00:54:50 +01:00
std::vector<std::vector<double>> MLPPNumericalAnalysis::hessian(double (*function)(std::vector<double>), std::vector<double> x) {
2023-01-24 19:00:54 +01:00
std::vector<std::vector<double>> hessian;
hessian.resize(x.size());
for (int i = 0; i < hessian.size(); i++) {
hessian[i].resize(x.size());
}
for (int i = 0; i < hessian.size(); i++) {
for (int j = 0; j < hessian[i].size(); j++) {
hessian[i][j] = numDiff_2(function, x, i, j);
}
}
return hessian;
}
2023-01-25 00:54:50 +01:00
std::vector<std::vector<std::vector<double>>> MLPPNumericalAnalysis::thirdOrderTensor(double (*function)(std::vector<double>), std::vector<double> x) {
2023-01-24 19:00:54 +01:00
std::vector<std::vector<std::vector<double>>> tensor;
tensor.resize(x.size());
for (int i = 0; i < tensor.size(); i++) {
tensor[i].resize(x.size());
for (int j = 0; j < tensor[i].size(); j++) {
tensor[i][j].resize(x.size());
}
}
for (int i = 0; i < tensor.size(); i++) { // O(n^3) time complexity :(
for (int j = 0; j < tensor[i].size(); j++) {
for (int k = 0; k < tensor[i][j].size(); k++)
tensor[i][j][k] = numDiff_3(function, x, i, j, k);
}
}
return tensor;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::constantApproximation(double (*function)(std::vector<double>), std::vector<double> c) {
2023-01-24 19:00:54 +01:00
return function(c);
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::linearApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
return constantApproximation(function, c) + alg.matmult(alg.transpose({ jacobian(function, c) }), { alg.subtraction(x, c) })[0][0];
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::quadraticApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
return linearApproximation(function, c, x) + 0.5 * alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(hessian(function, c), alg.transpose({ alg.subtraction(x, c) })))[0][0];
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::cubicApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x) {
2023-01-24 19:00:54 +01:00
/*
Not completely sure as the literature seldom discusses the third order taylor approximation,
in particular for multivariate cases, but ostensibly, the matrix/tensor/vector multiplies
should look something like this:
(N x N x N) (N x 1) [tensor vector mult] => (N x N x 1) => (N x N)
Perform remaining multiplies as done for the 2nd order approximation.
Result is a scalar.
*/
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
std::vector<std::vector<double>> resultMat = alg.tensor_vec_mult(thirdOrderTensor(function, c), alg.subtraction(x, c));
double resultScalar = alg.matmult({ (alg.subtraction(x, c)) }, alg.matmult(resultMat, alg.transpose({ alg.subtraction(x, c) })))[0][0];
return quadraticApproximation(function, c, x) + (1 / 6) * resultScalar;
}
2023-01-25 00:54:50 +01:00
double MLPPNumericalAnalysis::laplacian(double (*function)(std::vector<double>), std::vector<double> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
std::vector<std::vector<double>> hessian_matrix = hessian(function, x);
double laplacian = 0;
for (int i = 0; i < hessian_matrix.size(); i++) {
laplacian += hessian_matrix[i][i]; // homogenous 2nd derivs w.r.t i, then i
}
return laplacian;
}
2023-01-25 00:54:50 +01:00
std::string MLPPNumericalAnalysis::secondPartialDerivativeTest(double (*function)(std::vector<double>), std::vector<double> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
std::vector<std::vector<double>> hessianMatrix = hessian(function, x);
/*
The reason we do this is because the 2nd partial derivative test is less conclusive for functions of variables greater than
2, and the calculations specific to the bivariate case are less computationally intensive.
*/
if (x.size() == 2) {
double det = alg.det(hessianMatrix, hessianMatrix.size());
double secondDerivative = numDiff_2(function, x, 0, 0);
if (secondDerivative > 0 && det > 0) {
return "min";
} else if (secondDerivative < 0 && det > 0) {
return "max";
} else if (det < 0) {
return "saddle";
} else {
return "test was inconclusive";
}
} else {
if (alg.positiveDefiniteChecker(hessianMatrix)) {
return "min";
} else if (alg.negativeDefiniteChecker(hessianMatrix)) {
return "max";
} else if (!alg.zeroEigenvalue(hessianMatrix)) {
return "saddle";
} else {
return "test was inconclusive";
}
}
}