2023-01-23 21:13:26 +01:00
|
|
|
//
|
|
|
|
// Stat.cpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 9/29/20.
|
|
|
|
//
|
|
|
|
|
2023-01-24 18:12:23 +01:00
|
|
|
#include "stat.hpp"
|
|
|
|
#include "../activation/activation.h"
|
|
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
#include "../data/data.h"
|
2023-01-23 21:13:26 +01:00
|
|
|
#include <algorithm>
|
|
|
|
#include <map>
|
|
|
|
#include <cmath>
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
namespace MLPP{
|
|
|
|
double Stat::b0Estimation(const std::vector<double>& x, const std::vector<double>& y){
|
|
|
|
return mean(y) - b1Estimation(x, y) * mean(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::b1Estimation(const std::vector<double>& x, const std::vector<double>& y){
|
|
|
|
return covariance(x, y) / variance(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::mean(const std::vector<double>& x){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += x[i];
|
|
|
|
}
|
|
|
|
return sum / x.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::median(std::vector<double> x){
|
|
|
|
double center = double(x.size())/double(2);
|
|
|
|
sort(x.begin(), x.end());
|
|
|
|
if(x.size() % 2 == 0){
|
|
|
|
return mean({x[center - 1], x[center]});
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
return x[center - 1 + 0.5];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double> Stat::mode(const std::vector<double>& x){
|
|
|
|
Data data;
|
|
|
|
std::vector<double> x_set = data.vecToSet(x);
|
|
|
|
std::map<double, int> element_num;
|
|
|
|
for(int i = 0; i < x_set.size(); i++){
|
|
|
|
element_num[x[i]] = 0;
|
|
|
|
}
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
element_num[x[i]]++;
|
|
|
|
}
|
|
|
|
std::vector<double> modes;
|
|
|
|
double max_num = element_num[x_set[0]];
|
|
|
|
for(int i = 0; i < x_set.size(); i++){
|
|
|
|
if(element_num[x_set[i]] > max_num){
|
|
|
|
max_num = element_num[x_set[i]];
|
|
|
|
modes.clear();
|
|
|
|
modes.push_back(x_set[i]);
|
|
|
|
}
|
|
|
|
else if(element_num[x_set[i]] == max_num){
|
|
|
|
modes.push_back(x_set[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return modes;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::range(const std::vector<double>& x){
|
|
|
|
LinAlg alg;
|
|
|
|
return alg.max(x) - alg.min(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::midrange(const std::vector<double>& x){
|
|
|
|
return range(x)/2;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::absAvgDeviation(const std::vector<double>& x){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += std::abs(x[i] - mean(x));
|
|
|
|
}
|
|
|
|
return sum / x.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::standardDeviation(const std::vector<double>& x){
|
|
|
|
return std::sqrt(variance(x));
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::variance(const std::vector<double>& x){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += (x[i] - mean(x)) * (x[i] - mean(x));
|
|
|
|
}
|
|
|
|
return sum / (x.size() - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::covariance(const std::vector<double>& x, const std::vector<double>& y){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += (x[i] - mean(x)) * (y[i] - mean(y));
|
|
|
|
}
|
|
|
|
return sum / (x.size() - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::correlation(const std::vector<double>& x, const std::vector<double>& y){
|
|
|
|
return covariance(x, y) / (standardDeviation(x) * standardDeviation(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::R2(const std::vector<double>& x, const std::vector<double>& y){
|
|
|
|
return correlation(x, y) * correlation(x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::chebyshevIneq(const double k){
|
|
|
|
// X may or may not belong to a Gaussian Distribution
|
|
|
|
return 1 - 1 / (k * k);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::weightedMean(const std::vector<double>& x, const std::vector<double>& weights){
|
|
|
|
double sum = 0;
|
|
|
|
double weights_sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += x[i] * weights[i];
|
|
|
|
weights_sum += weights[i];
|
|
|
|
}
|
|
|
|
return sum / weights_sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::geometricMean(const std::vector<double>& x){
|
|
|
|
double product = 1;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
product *= x[i];
|
|
|
|
}
|
|
|
|
return std::pow(product, 1.0/x.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::harmonicMean(const std::vector<double>& x){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += 1/x[i];
|
|
|
|
}
|
|
|
|
return x.size()/sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::RMS(const std::vector<double>& x){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += x[i] * x[i];
|
|
|
|
}
|
|
|
|
return sqrt(sum / x.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::powerMean(const std::vector<double>& x, const double p){
|
|
|
|
double sum = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
sum += std::pow(x[i], p);
|
|
|
|
}
|
|
|
|
return std::pow(sum / x.size(), 1/p);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::lehmerMean(const std::vector<double>& x, const double p){
|
|
|
|
double num = 0;
|
|
|
|
double den = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
num += std::pow(x[i], p);
|
|
|
|
den += std::pow(x[i], p - 1);
|
|
|
|
}
|
|
|
|
return num/den;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::weightedLehmerMean(const std::vector<double>& x, const std::vector<double>& weights, const double p){
|
|
|
|
double num = 0;
|
|
|
|
double den = 0;
|
|
|
|
for(int i = 0; i < x.size(); i++){
|
|
|
|
num += weights[i] * std::pow(x[i], p);
|
|
|
|
den += weights[i] * std::pow(x[i], p - 1);
|
|
|
|
}
|
|
|
|
return num/den;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::heronianMean(const double A, const double B){
|
|
|
|
return (A + sqrt(A * B) + B) / 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::contraHarmonicMean(const std::vector<double>& x){
|
|
|
|
return lehmerMean(x, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::heinzMean(const double A, const double B, const double x){
|
|
|
|
return (std::pow(A, x) * std::pow(B, 1 - x) + std::pow(A, 1 - x) * std::pow(B, x)) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::neumanSandorMean(const double a, const double b){
|
|
|
|
Activation avn;
|
|
|
|
return (a - b) / 2 * avn.arsinh((a - b)/(a + b));
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::stolarskyMean(const double x, const double y, const double p){
|
|
|
|
if(x == y){
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
return std::pow((std::pow(x, p) - std::pow(y, p)) / (p * (x - y)), 1/(p - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::identricMean(const double x, const double y){
|
|
|
|
if(x == y){
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
return (1/M_E) * std::pow(std::pow(x, x) / std::pow(y, y), 1/(x-y));
|
|
|
|
}
|
|
|
|
|
|
|
|
double Stat::logMean(const double x, const double y){
|
|
|
|
if(x == y){
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
return (y - x) / (log(y) - std::log(x));
|
|
|
|
}
|
|
|
|
}
|