pmlpp/mlpp/mann/mann.h

48 lines
1.5 KiB
C
Raw Normal View History

//
// MANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#ifndef MANN_hpp
#define MANN_hpp
2023-01-24 18:12:23 +01:00
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
#include <vector>
#include <string>
namespace MLPP{
class MANN{
public:
MANN(std::vector<std::vector<double>> inputSet, std::vector<std::vector<double>> outputSet);
~MANN();
std::vector<std::vector<double>> modelSetTest(std::vector<std::vector<double>> X);
std::vector<double> modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
double score();
void save(std::string fileName);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
private:
double Cost(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y);
void forwardPass();
std::vector<std::vector<double>> inputSet;
std::vector<std::vector<double>> outputSet;
std::vector<std::vector<double>> y_hat;
std::vector<HiddenLayer> network;
MultiOutputLayer *outputLayer;
int n;
int k;
int n_output;
};
}
#endif /* MANN_hpp */