pmlpp/mlpp/transforms/transforms.cpp

83 lines
3.3 KiB
C++
Raw Normal View History

2023-12-30 00:41:59 +01:00
/*************************************************************************/
/* transforms.cpp */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
2023-12-30 00:43:39 +01:00
/* Copyright (c) 2023-present Péter Magyar. */
2023-12-30 00:41:59 +01:00
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2023-01-24 18:12:23 +01:00
#include "transforms.h"
#include "../lin_alg/lin_alg.h"
2023-12-28 14:41:45 +01:00
#include "core/math/math_funcs.h"
2023-01-24 19:00:54 +01:00
// DCT ii.
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
2023-12-28 14:41:45 +01:00
Ref<MLPPMatrix> MLPPTransforms::discrete_cosine_transform(const Ref<MLPPMatrix> &p_A) {
Ref<MLPPMatrix> A = p_A->scalar_addn(-128); // Center around 0.
Size2i size = A->size();
Ref<MLPPMatrix> B;
B.instance();
B->resize(size);
2023-01-24 19:00:54 +01:00
2023-12-28 14:41:45 +01:00
real_t M = size.y;
real_t inv_sqrt_M = 1 / Math::sqrt(M);
real_t s2M = Math::sqrt(real_t(2) / real_t(M));
2023-01-24 19:00:54 +01:00
2023-12-28 14:41:45 +01:00
for (int i = 0; i < size.y; i++) {
for (int j = 0; j < size.x; j++) {
2023-01-27 13:01:16 +01:00
real_t sum = 0;
2023-12-28 14:41:45 +01:00
2023-01-27 13:01:16 +01:00
real_t alphaI;
2023-01-24 19:00:54 +01:00
if (i == 0) {
2023-12-28 14:41:45 +01:00
alphaI = inv_sqrt_M;
2023-01-24 19:00:54 +01:00
} else {
2023-12-28 14:41:45 +01:00
alphaI = s2M;
2023-01-24 19:00:54 +01:00
}
2023-12-28 14:41:45 +01:00
2023-01-27 13:01:16 +01:00
real_t alphaJ;
2023-01-24 19:00:54 +01:00
if (j == 0) {
2023-12-28 14:41:45 +01:00
alphaJ = inv_sqrt_M;
2023-01-24 19:00:54 +01:00
} else {
2023-12-28 14:41:45 +01:00
alphaJ = s2M;
2023-01-24 19:00:54 +01:00
}
2023-12-28 14:41:45 +01:00
for (int k = 0; k < size.y; k++) {
for (int f = 0; f < size.x; f++) {
sum += A->element_get(k, f) * Math::cos((Math_PI * i * (2 * k + 1)) / (2 * M)) * Math::cos((Math_PI * j * (2 * f + 1)) / (2 * M));
2023-01-24 19:00:54 +01:00
}
}
2023-12-28 14:41:45 +01:00
B->element_set(i, j, sum * alphaI * alphaJ);
2023-01-24 19:00:54 +01:00
}
}
return B;
}
void MLPPTransforms::_bind_methods() {
}