2023-12-30 00:41:59 +01:00
/*************************************************************************/
/* gauss_markov_checker.cpp */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
2023-12-30 00:43:39 +01:00
/* Copyright (c) 2023-present Péter Magyar. */
2023-12-30 00:41:59 +01:00
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2023-01-23 21:13:26 +01:00
2023-01-24 18:12:23 +01:00
# include "gauss_markov_checker.h"
# include "../stat/stat.h"
2023-01-23 21:13:26 +01:00
# include <iostream>
2023-04-22 17:17:58 +02:00
/*
2023-01-27 13:01:16 +01:00
void MLPPGaussMarkovChecker : : checkGMConditions ( std : : vector < real_t > eps ) {
2023-01-24 19:00:54 +01:00
bool condition1 = arithmeticMean ( eps ) ;
bool condition2 = homoscedasticity ( eps ) ;
bool condition3 = exogeneity ( eps ) ;
2023-01-23 21:13:26 +01:00
2023-01-24 19:00:54 +01:00
if ( condition1 & & condition2 & & condition3 ) {
std : : cout < < " Gauss-Markov conditions were not violated. You may use OLS to obtain a BLUE estimator " < < std : : endl ;
} else {
std : : cout < < " A test of the expected value of 0 of the error terms returned " < < std : : boolalpha < < condition1 < < " , a test of homoscedasticity has returned " < < std : : boolalpha < < condition2 < < " , and a test of exogenity has returned " < < std : : boolalpha < < " . " < < std : : endl ;
}
}
2023-01-27 13:01:16 +01:00
bool MLPPGaussMarkovChecker : : arithmeticMean ( std : : vector < real_t > eps ) {
2023-02-12 16:23:51 +01:00
MLPPStat stat ;
2023-01-24 19:00:54 +01:00
if ( stat . mean ( eps ) = = 0 ) {
2023-02-12 16:23:51 +01:00
return true ;
2023-01-24 19:00:54 +01:00
} else {
2023-02-12 16:23:51 +01:00
return false ;
2023-01-24 19:00:54 +01:00
}
}
2023-01-27 13:01:16 +01:00
bool MLPPGaussMarkovChecker : : homoscedasticity ( std : : vector < real_t > eps ) {
2023-02-12 16:23:51 +01:00
MLPPStat stat ;
2023-01-27 13:01:16 +01:00
real_t currentVar = ( eps [ 0 ] - stat . mean ( eps ) ) * ( eps [ 0 ] - stat . mean ( eps ) ) / eps . size ( ) ;
2023-02-12 16:23:51 +01:00
for ( uint32_t i = 0 ; i < eps . size ( ) ; i + + ) {
2023-01-24 19:00:54 +01:00
if ( currentVar ! = ( eps [ i ] - stat . mean ( eps ) ) * ( eps [ i ] - stat . mean ( eps ) ) / eps . size ( ) ) {
2023-02-12 16:23:51 +01:00
return false ;
2023-01-24 19:00:54 +01:00
}
}
2023-02-12 16:23:51 +01:00
return true ;
2023-01-24 19:00:54 +01:00
}
2023-01-23 21:13:26 +01:00
2023-01-27 13:01:16 +01:00
bool MLPPGaussMarkovChecker : : exogeneity ( std : : vector < real_t > eps ) {
2023-02-12 16:23:51 +01:00
MLPPStat stat ;
for ( uint32_t i = 0 ; i < eps . size ( ) ; i + + ) {
for ( uint32_t j = 0 ; j < eps . size ( ) ; j + + ) {
2023-01-24 19:00:54 +01:00
if ( i ! = j ) {
if ( ( eps [ i ] - stat . mean ( eps ) ) * ( eps [ j ] - stat . mean ( eps ) ) / eps . size ( ) ! = 0 ) {
2023-02-12 16:23:51 +01:00
return false ;
2023-01-24 19:00:54 +01:00
}
}
}
}
2023-02-12 16:23:51 +01:00
return true ;
2023-01-23 21:13:26 +01:00
}
2023-04-22 17:17:58 +02:00
*/
2023-01-24 19:20:18 +01:00
2023-02-12 16:23:51 +01:00
void MLPPGaussMarkovChecker : : _bind_methods ( ) {
}