mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-23 15:06:52 +01:00
61 lines
2.1 KiB
C
61 lines
2.1 KiB
C
|
|
||
|
#ifndef MLPP_LIN_REG_OLD_H
|
||
|
#define MLPP_LIN_REG_OLD_H
|
||
|
|
||
|
//
|
||
|
// LinReg.hpp
|
||
|
//
|
||
|
// Created by Marc Melikyan on 10/2/20.
|
||
|
//
|
||
|
|
||
|
#include "core/math/math_defs.h"
|
||
|
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
|
||
|
class MLPPLinRegOld {
|
||
|
public:
|
||
|
MLPPLinRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||
|
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||
|
real_t modelTest(std::vector<real_t> x);
|
||
|
void NewtonRaphson(real_t learning_rate, int max_epoch, bool UI);
|
||
|
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||
|
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||
|
|
||
|
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = false);
|
||
|
void NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = false);
|
||
|
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = false);
|
||
|
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = false);
|
||
|
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||
|
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||
|
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
|
||
|
|
||
|
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||
|
void normalEquation();
|
||
|
real_t score();
|
||
|
void save(std::string fileName);
|
||
|
|
||
|
private:
|
||
|
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
|
||
|
|
||
|
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
|
||
|
real_t Evaluate(std::vector<real_t> x);
|
||
|
void forwardPass();
|
||
|
|
||
|
std::vector<std::vector<real_t>> inputSet;
|
||
|
std::vector<real_t> outputSet;
|
||
|
std::vector<real_t> y_hat;
|
||
|
std::vector<real_t> weights;
|
||
|
real_t bias;
|
||
|
|
||
|
int n;
|
||
|
int k;
|
||
|
|
||
|
// Regularization Params
|
||
|
std::string reg;
|
||
|
int lambda;
|
||
|
int alpha; /* This is the controlling param for Elastic Net*/
|
||
|
};
|
||
|
|
||
|
#endif /* LinReg_hpp */
|