pmlpp/mlpp/mlp/mlp.cpp

274 lines
8.7 KiB
C++
Raw Normal View History

//
// MLP.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-24 18:12:23 +01:00
#include "mlp.h"
#include "../activation/activation.h"
2023-01-24 19:00:54 +01:00
#include "../cost/cost.h"
2023-01-24 18:12:23 +01:00
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
2023-01-24 19:20:18 +01:00
2023-01-27 13:01:16 +01:00
MLPPMLP::MLPPMLP(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int n_hidden, std::string reg, real_t lambda, real_t alpha) :
2023-01-24 19:00:54 +01:00
inputSet(inputSet), outputSet(outputSet), n_hidden(n_hidden), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
y_hat.resize(n);
weights1 = MLPPUtilities::weightInitialization(k, n_hidden);
weights2 = MLPPUtilities::weightInitialization(n_hidden);
bias1 = MLPPUtilities::biasInitialization(n_hidden);
bias2 = MLPPUtilities::biasInitialization();
2023-01-24 19:00:54 +01:00
}
2023-01-27 13:01:16 +01:00
std::vector<real_t> MLPPMLP::modelSetTest(std::vector<std::vector<real_t>> X) {
2023-01-24 19:00:54 +01:00
return Evaluate(X);
}
2023-01-27 13:01:16 +01:00
real_t MLPPMLP::modelTest(std::vector<real_t> x) {
2023-01-24 19:00:54 +01:00
return Evaluate(x);
}
2023-01-27 13:01:16 +01:00
void MLPPMLP::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
// Calculating the errors
2023-01-27 13:01:16 +01:00
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
2023-01-24 19:00:54 +01:00
// Calculating the weight/bias gradients for layer 2
2023-01-27 13:01:16 +01:00
std::vector<real_t> D2_1 = alg.mat_vec_mult(alg.transpose(a2), error);
2023-01-24 19:00:54 +01:00
// weights and bias updation for layer 2
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / n, D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
bias2 -= learning_rate * alg.sum_elements(error) / n;
// Calculating the weight/bias for layer 1
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> D1_1;
2023-01-24 19:00:54 +01:00
D1_1.resize(n);
D1_1 = alg.outerProduct(error, weights2);
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
2023-01-24 19:00:54 +01:00
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2);
2023-01-24 19:00:54 +01:00
// weight an bias updation for layer 1
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / n, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / n, D1_2));
forwardPass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
2023-01-24 19:00:54 +01:00
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
2023-01-24 19:00:54 +01:00
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
2023-01-24 19:00:54 +01:00
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
2023-01-27 13:01:16 +01:00
void MLPPMLP::SGD(real_t learning_rate, int max_epoch, bool UI) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
2023-01-27 13:01:16 +01:00
real_t y_hat = Evaluate(inputSet[outputIndex]);
2023-01-24 19:00:54 +01:00
auto [z2, a2] = propagate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
2023-01-27 13:01:16 +01:00
real_t error = y_hat - outputSet[outputIndex];
2023-01-24 19:00:54 +01:00
// Weight updation for layer 2
2023-01-27 13:01:16 +01:00
std::vector<real_t> D2_1 = alg.scalarMultiply(error, a2);
2023-01-24 19:00:54 +01:00
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
// Bias updation for layer 2
bias2 -= learning_rate * error;
// Weight updation for layer 1
2023-01-27 13:01:16 +01:00
std::vector<real_t> D1_1 = alg.scalarMultiply(error, weights2);
std::vector<real_t> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
std::vector<std::vector<real_t>> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2);
2023-01-24 19:00:54 +01:00
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
// Bias updation for layer 1
bias1 = alg.subtraction(bias1, alg.scalarMultiply(learning_rate, D1_2));
y_hat = Evaluate(inputSet[outputIndex]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
2023-01-24 19:00:54 +01:00
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
2023-01-24 19:00:54 +01:00
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
2023-01-24 19:00:54 +01:00
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
2023-01-27 13:01:16 +01:00
void MLPPMLP::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
2023-01-24 19:00:54 +01:00
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
2023-01-27 13:01:16 +01:00
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
2023-01-24 19:00:54 +01:00
auto [z2, a2] = propagate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
// Calculating the errors
2023-01-27 13:01:16 +01:00
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
2023-01-24 19:00:54 +01:00
// Calculating the weight/bias gradients for layer 2
2023-01-27 13:01:16 +01:00
std::vector<real_t> D2_1 = alg.mat_vec_mult(alg.transpose(a2), error);
2023-01-24 19:00:54 +01:00
// weights and bias updation for layser 2
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
// Calculating the bias gradients for layer 2
2023-01-27 13:01:16 +01:00
real_t b_gradient = alg.sum_elements(error);
2023-01-24 19:00:54 +01:00
// Bias Updation for layer 2
bias2 -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
//Calculating the weight/bias for layer 1
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> D1_1 = alg.outerProduct(error, weights2);
2023-01-24 19:00:54 +01:00
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
2023-01-24 19:00:54 +01:00
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2);
2023-01-24 19:00:54 +01:00
// weight an bias updation for layer 1
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_2));
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
2023-01-24 19:00:54 +01:00
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
2023-01-24 19:00:54 +01:00
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
2023-01-24 19:00:54 +01:00
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
2023-01-27 13:01:16 +01:00
real_t MLPPMLP::score() {
MLPPUtilities util;
2023-01-24 19:00:54 +01:00
return util.performance(y_hat, outputSet);
}
2023-01-25 00:54:50 +01:00
void MLPPMLP::save(std::string fileName) {
MLPPUtilities util;
2023-01-24 19:00:54 +01:00
util.saveParameters(fileName, weights1, bias1, 0, 1);
util.saveParameters(fileName, weights2, bias2, 1, 2);
}
2023-01-27 13:01:16 +01:00
real_t MLPPMLP::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-24 19:37:08 +01:00
class MLPPCost cost;
2023-01-24 19:00:54 +01:00
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg);
}
2023-01-27 13:01:16 +01:00
std::vector<real_t> MLPPMLP::Evaluate(std::vector<std::vector<real_t>> X) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
2023-01-24 19:00:54 +01:00
return avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2)));
}
2023-01-27 13:01:16 +01:00
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPMLP::propagate(std::vector<std::vector<real_t>> X) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
2023-01-24 19:00:54 +01:00
return { z2, a2 };
}
2023-01-27 13:01:16 +01:00
real_t MLPPMLP::Evaluate(std::vector<real_t> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-27 13:01:16 +01:00
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
2023-01-24 19:00:54 +01:00
return avn.sigmoid(alg.dot(weights2, a2) + bias2);
}
2023-01-27 13:01:16 +01:00
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPMLP::propagate(std::vector<real_t> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-27 13:01:16 +01:00
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
2023-01-24 19:00:54 +01:00
return { z2, a2 };
}
2023-01-25 00:54:50 +01:00
void MLPPMLP::forwardPass() {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
a2 = avn.sigmoid(z2);
y_hat = avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2)));
}
2023-01-24 19:20:18 +01:00