2023-01-24 18:57:18 +01:00
|
|
|
|
|
|
|
#ifndef MLPP_WGAN_H
|
|
|
|
#define MLPP_WGAN_H
|
|
|
|
|
2023-01-23 21:13:26 +01:00
|
|
|
//
|
|
|
|
// WGAN.hpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
|
|
//
|
|
|
|
|
2023-01-24 18:12:23 +01:00
|
|
|
#include "../hidden_layer/hidden_layer.h"
|
|
|
|
#include "../output_layer/output_layer.h"
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#include <string>
|
2023-01-24 19:00:54 +01:00
|
|
|
#include <tuple>
|
|
|
|
#include <vector>
|
|
|
|
|
2023-01-24 19:20:18 +01:00
|
|
|
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
class WGAN {
|
|
|
|
public:
|
|
|
|
WGAN(double k, std::vector<std::vector<double>> outputSet);
|
|
|
|
~WGAN();
|
|
|
|
std::vector<std::vector<double>> generateExample(int n);
|
|
|
|
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
|
|
|
|
double score();
|
|
|
|
void save(std::string fileName);
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
|
|
|
|
void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
private:
|
|
|
|
std::vector<std::vector<double>> modelSetTestGenerator(std::vector<std::vector<double>> X); // Evaluator for the generator of the WGAN.
|
|
|
|
std::vector<double> modelSetTestDiscriminator(std::vector<std::vector<double>> X); // Evaluator for the discriminator of the WGAN.
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
double Cost(std::vector<double> y_hat, std::vector<double> y);
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
void forwardPass();
|
|
|
|
void updateDiscriminatorParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, std::vector<double> outputLayerUpdation, double learning_rate);
|
|
|
|
void updateGeneratorParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, double learning_rate);
|
|
|
|
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet);
|
|
|
|
std::vector<std::vector<std::vector<double>>> computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet);
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
void UI(int epoch, double cost_prev, std::vector<double> y_hat, std::vector<double> outputSet);
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
std::vector<std::vector<double>> outputSet;
|
|
|
|
std::vector<double> y_hat;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
std::vector<HiddenLayer> network;
|
|
|
|
OutputLayer *outputLayer;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
int n;
|
|
|
|
int k;
|
|
|
|
};
|
2023-01-24 19:20:18 +01:00
|
|
|
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#endif /* WGAN_hpp */
|