mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-18 07:17:18 +01:00
3555 lines
97 KiB
C++
3555 lines
97 KiB
C++
// FastNoise.cpp
|
|
//
|
|
// MIT License
|
|
//
|
|
// Copyright(c) 2017 Jordan Peck
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files(the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions :
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
//
|
|
// The developer's email is jorzixdan.me2@gzixmail.com (for great email, take
|
|
// off every 'zix'.)
|
|
//
|
|
|
|
#include "FastNoise.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <random>
|
|
|
|
namespace fastnoise {
|
|
|
|
const FN_DECIMAL GRAD_X[] = {
|
|
1, -1, 1, -1,
|
|
1, -1, 1, -1,
|
|
0, 0, 0, 0
|
|
};
|
|
const FN_DECIMAL GRAD_Y[] = {
|
|
1, 1, -1, -1,
|
|
0, 0, 0, 0,
|
|
1, -1, 1, -1
|
|
};
|
|
const FN_DECIMAL GRAD_Z[] = {
|
|
0, 0, 0, 0,
|
|
1, 1, -1, -1,
|
|
1, 1, -1, -1
|
|
};
|
|
|
|
const FN_DECIMAL GRAD_4D[] = {
|
|
0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1,
|
|
0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1,
|
|
1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1,
|
|
-1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1,
|
|
1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1,
|
|
-1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1,
|
|
1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0,
|
|
-1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0
|
|
};
|
|
|
|
const FN_DECIMAL VAL_LUT[] = {
|
|
FN_DECIMAL(0.3490196078),
|
|
FN_DECIMAL(0.4352941176),
|
|
FN_DECIMAL(-0.4509803922),
|
|
FN_DECIMAL(0.6392156863),
|
|
FN_DECIMAL(0.5843137255),
|
|
FN_DECIMAL(-0.1215686275),
|
|
FN_DECIMAL(0.7176470588),
|
|
FN_DECIMAL(-0.1058823529),
|
|
FN_DECIMAL(0.3960784314),
|
|
FN_DECIMAL(0.0431372549),
|
|
FN_DECIMAL(-0.03529411765),
|
|
FN_DECIMAL(0.3176470588),
|
|
FN_DECIMAL(0.7254901961),
|
|
FN_DECIMAL(0.137254902),
|
|
FN_DECIMAL(0.8588235294),
|
|
FN_DECIMAL(-0.8196078431),
|
|
FN_DECIMAL(-0.7960784314),
|
|
FN_DECIMAL(-0.3333333333),
|
|
FN_DECIMAL(-0.6705882353),
|
|
FN_DECIMAL(-0.3882352941),
|
|
FN_DECIMAL(0.262745098),
|
|
FN_DECIMAL(0.3254901961),
|
|
FN_DECIMAL(-0.6470588235),
|
|
FN_DECIMAL(-0.9215686275),
|
|
FN_DECIMAL(-0.5294117647),
|
|
FN_DECIMAL(0.5294117647),
|
|
FN_DECIMAL(-0.4666666667),
|
|
FN_DECIMAL(0.8117647059),
|
|
FN_DECIMAL(0.3803921569),
|
|
FN_DECIMAL(0.662745098),
|
|
FN_DECIMAL(0.03529411765),
|
|
FN_DECIMAL(-0.6156862745),
|
|
FN_DECIMAL(-0.01960784314),
|
|
FN_DECIMAL(-0.3568627451),
|
|
FN_DECIMAL(-0.09019607843),
|
|
FN_DECIMAL(0.7490196078),
|
|
FN_DECIMAL(0.8352941176),
|
|
FN_DECIMAL(-0.4039215686),
|
|
FN_DECIMAL(-0.7490196078),
|
|
FN_DECIMAL(0.9529411765),
|
|
FN_DECIMAL(-0.0431372549),
|
|
FN_DECIMAL(-0.9294117647),
|
|
FN_DECIMAL(-0.6549019608),
|
|
FN_DECIMAL(0.9215686275),
|
|
FN_DECIMAL(-0.06666666667),
|
|
FN_DECIMAL(-0.4431372549),
|
|
FN_DECIMAL(0.4117647059),
|
|
FN_DECIMAL(-0.4196078431),
|
|
FN_DECIMAL(-0.7176470588),
|
|
FN_DECIMAL(-0.8117647059),
|
|
FN_DECIMAL(-0.2549019608),
|
|
FN_DECIMAL(0.4901960784),
|
|
FN_DECIMAL(0.9137254902),
|
|
FN_DECIMAL(0.7882352941),
|
|
FN_DECIMAL(-1.0),
|
|
FN_DECIMAL(-0.4745098039),
|
|
FN_DECIMAL(0.7960784314),
|
|
FN_DECIMAL(0.8509803922),
|
|
FN_DECIMAL(-0.6784313725),
|
|
FN_DECIMAL(0.4588235294),
|
|
FN_DECIMAL(1.0),
|
|
FN_DECIMAL(-0.1843137255),
|
|
FN_DECIMAL(0.4509803922),
|
|
FN_DECIMAL(0.1450980392),
|
|
FN_DECIMAL(-0.231372549),
|
|
FN_DECIMAL(-0.968627451),
|
|
FN_DECIMAL(-0.8588235294),
|
|
FN_DECIMAL(0.4274509804),
|
|
FN_DECIMAL(0.003921568627),
|
|
FN_DECIMAL(-0.003921568627),
|
|
FN_DECIMAL(0.2156862745),
|
|
FN_DECIMAL(0.5058823529),
|
|
FN_DECIMAL(0.7647058824),
|
|
FN_DECIMAL(0.2078431373),
|
|
FN_DECIMAL(-0.5921568627),
|
|
FN_DECIMAL(0.5764705882),
|
|
FN_DECIMAL(-0.1921568627),
|
|
FN_DECIMAL(-0.937254902),
|
|
FN_DECIMAL(0.08235294118),
|
|
FN_DECIMAL(-0.08235294118),
|
|
FN_DECIMAL(0.9058823529),
|
|
FN_DECIMAL(0.8274509804),
|
|
FN_DECIMAL(0.02745098039),
|
|
FN_DECIMAL(-0.168627451),
|
|
FN_DECIMAL(-0.7803921569),
|
|
FN_DECIMAL(0.1137254902),
|
|
FN_DECIMAL(-0.9450980392),
|
|
FN_DECIMAL(0.2),
|
|
FN_DECIMAL(0.01960784314),
|
|
FN_DECIMAL(0.5607843137),
|
|
FN_DECIMAL(0.2705882353),
|
|
FN_DECIMAL(0.4431372549),
|
|
FN_DECIMAL(-0.9607843137),
|
|
FN_DECIMAL(0.6156862745),
|
|
FN_DECIMAL(0.9294117647),
|
|
FN_DECIMAL(-0.07450980392),
|
|
FN_DECIMAL(0.3098039216),
|
|
FN_DECIMAL(0.9921568627),
|
|
FN_DECIMAL(-0.9137254902),
|
|
FN_DECIMAL(-0.2941176471),
|
|
FN_DECIMAL(-0.3411764706),
|
|
FN_DECIMAL(-0.6235294118),
|
|
FN_DECIMAL(-0.7647058824),
|
|
FN_DECIMAL(-0.8901960784),
|
|
FN_DECIMAL(0.05882352941),
|
|
FN_DECIMAL(0.2392156863),
|
|
FN_DECIMAL(0.7333333333),
|
|
FN_DECIMAL(0.6549019608),
|
|
FN_DECIMAL(0.2470588235),
|
|
FN_DECIMAL(0.231372549),
|
|
FN_DECIMAL(-0.3960784314),
|
|
FN_DECIMAL(-0.05098039216),
|
|
FN_DECIMAL(-0.2235294118),
|
|
FN_DECIMAL(-0.3725490196),
|
|
FN_DECIMAL(0.6235294118),
|
|
FN_DECIMAL(0.7019607843),
|
|
FN_DECIMAL(-0.8274509804),
|
|
FN_DECIMAL(0.4196078431),
|
|
FN_DECIMAL(0.07450980392),
|
|
FN_DECIMAL(0.8666666667),
|
|
FN_DECIMAL(-0.537254902),
|
|
FN_DECIMAL(-0.5058823529),
|
|
FN_DECIMAL(-0.8039215686),
|
|
FN_DECIMAL(0.09019607843),
|
|
FN_DECIMAL(-0.4823529412),
|
|
FN_DECIMAL(0.6705882353),
|
|
FN_DECIMAL(-0.7882352941),
|
|
FN_DECIMAL(0.09803921569),
|
|
FN_DECIMAL(-0.6078431373),
|
|
FN_DECIMAL(0.8039215686),
|
|
FN_DECIMAL(-0.6),
|
|
FN_DECIMAL(-0.3254901961),
|
|
FN_DECIMAL(-0.4117647059),
|
|
FN_DECIMAL(-0.01176470588),
|
|
FN_DECIMAL(0.4823529412),
|
|
FN_DECIMAL(0.168627451),
|
|
FN_DECIMAL(0.8745098039),
|
|
FN_DECIMAL(-0.3647058824),
|
|
FN_DECIMAL(-0.1607843137),
|
|
FN_DECIMAL(0.568627451),
|
|
FN_DECIMAL(-0.9921568627),
|
|
FN_DECIMAL(0.9450980392),
|
|
FN_DECIMAL(0.5137254902),
|
|
FN_DECIMAL(0.01176470588),
|
|
FN_DECIMAL(-0.1450980392),
|
|
FN_DECIMAL(-0.5529411765),
|
|
FN_DECIMAL(-0.5764705882),
|
|
FN_DECIMAL(-0.1137254902),
|
|
FN_DECIMAL(0.5215686275),
|
|
FN_DECIMAL(0.1607843137),
|
|
FN_DECIMAL(0.3725490196),
|
|
FN_DECIMAL(-0.2),
|
|
FN_DECIMAL(-0.7254901961),
|
|
FN_DECIMAL(0.631372549),
|
|
FN_DECIMAL(0.7098039216),
|
|
FN_DECIMAL(-0.568627451),
|
|
FN_DECIMAL(0.1294117647),
|
|
FN_DECIMAL(-0.3098039216),
|
|
FN_DECIMAL(0.7411764706),
|
|
FN_DECIMAL(-0.8509803922),
|
|
FN_DECIMAL(0.2549019608),
|
|
FN_DECIMAL(-0.6392156863),
|
|
FN_DECIMAL(-0.5607843137),
|
|
FN_DECIMAL(-0.3176470588),
|
|
FN_DECIMAL(0.937254902),
|
|
FN_DECIMAL(0.9843137255),
|
|
FN_DECIMAL(0.5921568627),
|
|
FN_DECIMAL(0.6941176471),
|
|
FN_DECIMAL(0.2862745098),
|
|
FN_DECIMAL(-0.5215686275),
|
|
FN_DECIMAL(0.1764705882),
|
|
FN_DECIMAL(0.537254902),
|
|
FN_DECIMAL(-0.4901960784),
|
|
FN_DECIMAL(-0.4588235294),
|
|
FN_DECIMAL(-0.2078431373),
|
|
FN_DECIMAL(-0.2156862745),
|
|
FN_DECIMAL(0.7725490196),
|
|
FN_DECIMAL(0.3647058824),
|
|
FN_DECIMAL(-0.2392156863),
|
|
FN_DECIMAL(0.2784313725),
|
|
FN_DECIMAL(-0.8823529412),
|
|
FN_DECIMAL(0.8980392157),
|
|
FN_DECIMAL(0.1215686275),
|
|
FN_DECIMAL(0.1058823529),
|
|
FN_DECIMAL(-0.8745098039),
|
|
FN_DECIMAL(-0.9843137255),
|
|
FN_DECIMAL(-0.7019607843),
|
|
FN_DECIMAL(0.9607843137),
|
|
FN_DECIMAL(0.2941176471),
|
|
FN_DECIMAL(0.3411764706),
|
|
FN_DECIMAL(0.1529411765),
|
|
FN_DECIMAL(0.06666666667),
|
|
FN_DECIMAL(-0.9764705882),
|
|
FN_DECIMAL(0.3019607843),
|
|
FN_DECIMAL(0.6470588235),
|
|
FN_DECIMAL(-0.5843137255),
|
|
FN_DECIMAL(0.05098039216),
|
|
FN_DECIMAL(-0.5137254902),
|
|
FN_DECIMAL(-0.137254902),
|
|
FN_DECIMAL(0.3882352941),
|
|
FN_DECIMAL(-0.262745098),
|
|
FN_DECIMAL(-0.3019607843),
|
|
FN_DECIMAL(-0.1764705882),
|
|
FN_DECIMAL(-0.7568627451),
|
|
FN_DECIMAL(0.1843137255),
|
|
FN_DECIMAL(-0.5450980392),
|
|
FN_DECIMAL(-0.4980392157),
|
|
FN_DECIMAL(-0.2784313725),
|
|
FN_DECIMAL(-0.9529411765),
|
|
FN_DECIMAL(-0.09803921569),
|
|
FN_DECIMAL(0.8901960784),
|
|
FN_DECIMAL(-0.2862745098),
|
|
FN_DECIMAL(-0.3803921569),
|
|
FN_DECIMAL(0.5529411765),
|
|
FN_DECIMAL(0.7803921569),
|
|
FN_DECIMAL(-0.8352941176),
|
|
FN_DECIMAL(0.6862745098),
|
|
FN_DECIMAL(0.7568627451),
|
|
FN_DECIMAL(0.4980392157),
|
|
FN_DECIMAL(-0.6862745098),
|
|
FN_DECIMAL(-0.8980392157),
|
|
FN_DECIMAL(-0.7725490196),
|
|
FN_DECIMAL(-0.7098039216),
|
|
FN_DECIMAL(-0.2470588235),
|
|
FN_DECIMAL(-0.9058823529),
|
|
FN_DECIMAL(0.9764705882),
|
|
FN_DECIMAL(0.1921568627),
|
|
FN_DECIMAL(0.8431372549),
|
|
FN_DECIMAL(-0.05882352941),
|
|
FN_DECIMAL(0.3568627451),
|
|
FN_DECIMAL(0.6078431373),
|
|
FN_DECIMAL(0.5450980392),
|
|
FN_DECIMAL(0.4039215686),
|
|
FN_DECIMAL(-0.7333333333),
|
|
FN_DECIMAL(-0.4274509804),
|
|
FN_DECIMAL(0.6),
|
|
FN_DECIMAL(0.6784313725),
|
|
FN_DECIMAL(-0.631372549),
|
|
FN_DECIMAL(-0.02745098039),
|
|
FN_DECIMAL(-0.1294117647),
|
|
FN_DECIMAL(0.3333333333),
|
|
FN_DECIMAL(-0.8431372549),
|
|
FN_DECIMAL(0.2235294118),
|
|
FN_DECIMAL(-0.3490196078),
|
|
FN_DECIMAL(-0.6941176471),
|
|
FN_DECIMAL(0.8823529412),
|
|
FN_DECIMAL(0.4745098039),
|
|
FN_DECIMAL(0.4666666667),
|
|
FN_DECIMAL(-0.7411764706),
|
|
FN_DECIMAL(-0.2705882353),
|
|
FN_DECIMAL(0.968627451),
|
|
FN_DECIMAL(0.8196078431),
|
|
FN_DECIMAL(-0.662745098),
|
|
FN_DECIMAL(-0.4352941176),
|
|
FN_DECIMAL(-0.8666666667),
|
|
FN_DECIMAL(-0.1529411765),
|
|
};
|
|
|
|
const FN_DECIMAL CELL_2D_X[] = {
|
|
FN_DECIMAL(-0.6440658039),
|
|
FN_DECIMAL(-0.08028078721),
|
|
FN_DECIMAL(0.9983546168),
|
|
FN_DECIMAL(0.9869492062),
|
|
FN_DECIMAL(0.9284746418),
|
|
FN_DECIMAL(0.6051097552),
|
|
FN_DECIMAL(-0.794167404),
|
|
FN_DECIMAL(-0.3488667991),
|
|
FN_DECIMAL(-0.943136526),
|
|
FN_DECIMAL(-0.9968171318),
|
|
FN_DECIMAL(0.8740961579),
|
|
FN_DECIMAL(0.1421139764),
|
|
FN_DECIMAL(0.4282553608),
|
|
FN_DECIMAL(-0.9986665833),
|
|
FN_DECIMAL(0.9996760121),
|
|
FN_DECIMAL(-0.06248383632),
|
|
FN_DECIMAL(0.7120139305),
|
|
FN_DECIMAL(0.8917660409),
|
|
FN_DECIMAL(0.1094842955),
|
|
FN_DECIMAL(-0.8730880804),
|
|
FN_DECIMAL(0.2594811489),
|
|
FN_DECIMAL(-0.6690063346),
|
|
FN_DECIMAL(-0.9996834972),
|
|
FN_DECIMAL(-0.8803608671),
|
|
FN_DECIMAL(-0.8166554937),
|
|
FN_DECIMAL(0.8955599676),
|
|
FN_DECIMAL(-0.9398321388),
|
|
FN_DECIMAL(0.07615451399),
|
|
FN_DECIMAL(-0.7147270565),
|
|
FN_DECIMAL(0.8707354457),
|
|
FN_DECIMAL(-0.9580008579),
|
|
FN_DECIMAL(0.4905965632),
|
|
FN_DECIMAL(0.786775944),
|
|
FN_DECIMAL(0.1079711577),
|
|
FN_DECIMAL(0.2686638979),
|
|
FN_DECIMAL(0.6113487322),
|
|
FN_DECIMAL(-0.530770584),
|
|
FN_DECIMAL(-0.7837268286),
|
|
FN_DECIMAL(-0.8558691039),
|
|
FN_DECIMAL(-0.5726093896),
|
|
FN_DECIMAL(-0.9830740914),
|
|
FN_DECIMAL(0.7087766359),
|
|
FN_DECIMAL(0.6807027153),
|
|
FN_DECIMAL(-0.08864708788),
|
|
FN_DECIMAL(0.6704485923),
|
|
FN_DECIMAL(-0.1350735482),
|
|
FN_DECIMAL(-0.9381333003),
|
|
FN_DECIMAL(0.9756655376),
|
|
FN_DECIMAL(0.4231433671),
|
|
FN_DECIMAL(-0.4959787385),
|
|
FN_DECIMAL(0.1005554325),
|
|
FN_DECIMAL(-0.7645857281),
|
|
FN_DECIMAL(-0.5859053796),
|
|
FN_DECIMAL(-0.9751154306),
|
|
FN_DECIMAL(-0.6972258572),
|
|
FN_DECIMAL(0.7907012002),
|
|
FN_DECIMAL(-0.9109899213),
|
|
FN_DECIMAL(-0.9584307894),
|
|
FN_DECIMAL(-0.8269529333),
|
|
FN_DECIMAL(0.2608264719),
|
|
FN_DECIMAL(-0.7773760119),
|
|
FN_DECIMAL(0.7606456974),
|
|
FN_DECIMAL(-0.8961083758),
|
|
FN_DECIMAL(-0.9838134719),
|
|
FN_DECIMAL(0.7338893576),
|
|
FN_DECIMAL(0.2161226729),
|
|
FN_DECIMAL(0.673509891),
|
|
FN_DECIMAL(-0.5512056873),
|
|
FN_DECIMAL(0.6899744332),
|
|
FN_DECIMAL(0.868004831),
|
|
FN_DECIMAL(0.5897430311),
|
|
FN_DECIMAL(-0.8950444221),
|
|
FN_DECIMAL(-0.3595752773),
|
|
FN_DECIMAL(0.8209486981),
|
|
FN_DECIMAL(-0.2912360132),
|
|
FN_DECIMAL(-0.9965011374),
|
|
FN_DECIMAL(0.9766994634),
|
|
FN_DECIMAL(0.738790822),
|
|
FN_DECIMAL(-0.4730947722),
|
|
FN_DECIMAL(0.8946479441),
|
|
FN_DECIMAL(-0.6943628971),
|
|
FN_DECIMAL(-0.6620468182),
|
|
FN_DECIMAL(-0.0887255502),
|
|
FN_DECIMAL(-0.7512250855),
|
|
FN_DECIMAL(-0.5322986898),
|
|
FN_DECIMAL(0.5226295385),
|
|
FN_DECIMAL(0.2296318375),
|
|
FN_DECIMAL(0.7915307344),
|
|
FN_DECIMAL(-0.2756485999),
|
|
FN_DECIMAL(-0.6900234522),
|
|
FN_DECIMAL(0.07090588086),
|
|
FN_DECIMAL(0.5981278485),
|
|
FN_DECIMAL(0.3033429312),
|
|
FN_DECIMAL(-0.7253142797),
|
|
FN_DECIMAL(-0.9855874307),
|
|
FN_DECIMAL(-0.1761843396),
|
|
FN_DECIMAL(-0.6438468325),
|
|
FN_DECIMAL(-0.9956136595),
|
|
FN_DECIMAL(0.8541580762),
|
|
FN_DECIMAL(-0.9999807666),
|
|
FN_DECIMAL(-0.02152416253),
|
|
FN_DECIMAL(-0.8705983095),
|
|
FN_DECIMAL(-0.1197138014),
|
|
FN_DECIMAL(-0.992107781),
|
|
FN_DECIMAL(-0.9091181546),
|
|
FN_DECIMAL(0.788610536),
|
|
FN_DECIMAL(-0.994636402),
|
|
FN_DECIMAL(0.4211256853),
|
|
FN_DECIMAL(0.3110430857),
|
|
FN_DECIMAL(-0.4031127839),
|
|
FN_DECIMAL(0.7610684239),
|
|
FN_DECIMAL(0.7685674467),
|
|
FN_DECIMAL(0.152271555),
|
|
FN_DECIMAL(-0.9364648723),
|
|
FN_DECIMAL(0.1681333739),
|
|
FN_DECIMAL(-0.3567427907),
|
|
FN_DECIMAL(-0.418445483),
|
|
FN_DECIMAL(-0.98774778),
|
|
FN_DECIMAL(0.8705250765),
|
|
FN_DECIMAL(-0.8911701067),
|
|
FN_DECIMAL(-0.7315350966),
|
|
FN_DECIMAL(0.6030885658),
|
|
FN_DECIMAL(-0.4149130821),
|
|
FN_DECIMAL(0.7585339481),
|
|
FN_DECIMAL(0.6963196535),
|
|
FN_DECIMAL(0.8332685012),
|
|
FN_DECIMAL(-0.8086815232),
|
|
FN_DECIMAL(0.7518116724),
|
|
FN_DECIMAL(-0.3490535894),
|
|
FN_DECIMAL(0.6972110903),
|
|
FN_DECIMAL(-0.8795676928),
|
|
FN_DECIMAL(-0.6442331882),
|
|
FN_DECIMAL(0.6610236811),
|
|
FN_DECIMAL(-0.9853565782),
|
|
FN_DECIMAL(-0.590338458),
|
|
FN_DECIMAL(0.09843602117),
|
|
FN_DECIMAL(0.5646534882),
|
|
FN_DECIMAL(-0.6023259233),
|
|
FN_DECIMAL(-0.3539248861),
|
|
FN_DECIMAL(0.5132728656),
|
|
FN_DECIMAL(0.9380385118),
|
|
FN_DECIMAL(-0.7599270056),
|
|
FN_DECIMAL(-0.7425936564),
|
|
FN_DECIMAL(-0.6679610562),
|
|
FN_DECIMAL(-0.3018497816),
|
|
FN_DECIMAL(0.814478266),
|
|
FN_DECIMAL(0.03777430269),
|
|
FN_DECIMAL(-0.7514235086),
|
|
FN_DECIMAL(0.9662556939),
|
|
FN_DECIMAL(-0.4720194901),
|
|
FN_DECIMAL(-0.435054126),
|
|
FN_DECIMAL(0.7091901235),
|
|
FN_DECIMAL(0.929379209),
|
|
FN_DECIMAL(0.9997434357),
|
|
FN_DECIMAL(0.8306320299),
|
|
FN_DECIMAL(-0.9434019629),
|
|
FN_DECIMAL(-0.133133759),
|
|
FN_DECIMAL(0.5048413216),
|
|
FN_DECIMAL(0.3711995273),
|
|
FN_DECIMAL(0.98552091),
|
|
FN_DECIMAL(0.7401857005),
|
|
FN_DECIMAL(-0.9999981398),
|
|
FN_DECIMAL(-0.2144033253),
|
|
FN_DECIMAL(0.4808624681),
|
|
FN_DECIMAL(-0.413835885),
|
|
FN_DECIMAL(0.644229305),
|
|
FN_DECIMAL(0.9626648696),
|
|
FN_DECIMAL(0.1833665934),
|
|
FN_DECIMAL(0.5794129),
|
|
FN_DECIMAL(0.01404446873),
|
|
FN_DECIMAL(0.4388494993),
|
|
FN_DECIMAL(0.5213612322),
|
|
FN_DECIMAL(-0.5281609948),
|
|
FN_DECIMAL(-0.9745306846),
|
|
FN_DECIMAL(-0.9904373013),
|
|
FN_DECIMAL(0.9100232252),
|
|
FN_DECIMAL(-0.9914057719),
|
|
FN_DECIMAL(0.7892627765),
|
|
FN_DECIMAL(0.3364421659),
|
|
FN_DECIMAL(-0.9416099764),
|
|
FN_DECIMAL(0.7802732656),
|
|
FN_DECIMAL(0.886302871),
|
|
FN_DECIMAL(0.6524471291),
|
|
FN_DECIMAL(0.5762186726),
|
|
FN_DECIMAL(-0.08987644664),
|
|
FN_DECIMAL(-0.2177026782),
|
|
FN_DECIMAL(-0.9720345052),
|
|
FN_DECIMAL(-0.05722538858),
|
|
FN_DECIMAL(0.8105983127),
|
|
FN_DECIMAL(0.3410261032),
|
|
FN_DECIMAL(0.6452309645),
|
|
FN_DECIMAL(-0.7810612152),
|
|
FN_DECIMAL(0.9989395718),
|
|
FN_DECIMAL(-0.808247815),
|
|
FN_DECIMAL(0.6370177929),
|
|
FN_DECIMAL(0.5844658772),
|
|
FN_DECIMAL(0.2054070861),
|
|
FN_DECIMAL(0.055960522),
|
|
FN_DECIMAL(-0.995827561),
|
|
FN_DECIMAL(0.893409165),
|
|
FN_DECIMAL(-0.931516824),
|
|
FN_DECIMAL(0.328969469),
|
|
FN_DECIMAL(-0.3193837488),
|
|
FN_DECIMAL(0.7314755657),
|
|
FN_DECIMAL(-0.7913517714),
|
|
FN_DECIMAL(-0.2204109786),
|
|
FN_DECIMAL(0.9955900414),
|
|
FN_DECIMAL(-0.7112353139),
|
|
FN_DECIMAL(-0.7935008741),
|
|
FN_DECIMAL(-0.9961918204),
|
|
FN_DECIMAL(-0.9714163995),
|
|
FN_DECIMAL(-0.9566188669),
|
|
FN_DECIMAL(0.2748495632),
|
|
FN_DECIMAL(-0.4681743221),
|
|
FN_DECIMAL(-0.9614449642),
|
|
FN_DECIMAL(0.585194072),
|
|
FN_DECIMAL(0.4532946061),
|
|
FN_DECIMAL(-0.9916113176),
|
|
FN_DECIMAL(0.942479587),
|
|
FN_DECIMAL(-0.9813704753),
|
|
FN_DECIMAL(-0.6538429571),
|
|
FN_DECIMAL(0.2923335053),
|
|
FN_DECIMAL(-0.2246660704),
|
|
FN_DECIMAL(-0.1800781949),
|
|
FN_DECIMAL(-0.9581216256),
|
|
FN_DECIMAL(0.552215082),
|
|
FN_DECIMAL(-0.9296791922),
|
|
FN_DECIMAL(0.643183699),
|
|
FN_DECIMAL(0.9997325981),
|
|
FN_DECIMAL(-0.4606920354),
|
|
FN_DECIMAL(-0.2148721265),
|
|
FN_DECIMAL(0.3482070809),
|
|
FN_DECIMAL(0.3075517813),
|
|
FN_DECIMAL(0.6274756393),
|
|
FN_DECIMAL(0.8910881765),
|
|
FN_DECIMAL(-0.6397771309),
|
|
FN_DECIMAL(-0.4479080125),
|
|
FN_DECIMAL(-0.5247665011),
|
|
FN_DECIMAL(-0.8386507094),
|
|
FN_DECIMAL(0.3901291416),
|
|
FN_DECIMAL(0.1458336921),
|
|
FN_DECIMAL(0.01624613149),
|
|
FN_DECIMAL(-0.8273199879),
|
|
FN_DECIMAL(0.5611100679),
|
|
FN_DECIMAL(-0.8380219841),
|
|
FN_DECIMAL(-0.9856122234),
|
|
FN_DECIMAL(-0.861398618),
|
|
FN_DECIMAL(0.6398413916),
|
|
FN_DECIMAL(0.2694510795),
|
|
FN_DECIMAL(0.4327334514),
|
|
FN_DECIMAL(-0.9960265354),
|
|
FN_DECIMAL(-0.939570655),
|
|
FN_DECIMAL(-0.8846996446),
|
|
FN_DECIMAL(0.7642113189),
|
|
FN_DECIMAL(-0.7002080528),
|
|
FN_DECIMAL(0.664508256),
|
|
};
|
|
const FN_DECIMAL CELL_2D_Y[] = {
|
|
FN_DECIMAL(0.7649700911),
|
|
FN_DECIMAL(0.9967722885),
|
|
FN_DECIMAL(0.05734160033),
|
|
FN_DECIMAL(-0.1610318741),
|
|
FN_DECIMAL(0.371395799),
|
|
FN_DECIMAL(-0.7961420628),
|
|
FN_DECIMAL(0.6076990492),
|
|
FN_DECIMAL(-0.9371723195),
|
|
FN_DECIMAL(0.3324056156),
|
|
FN_DECIMAL(0.07972205329),
|
|
FN_DECIMAL(-0.4857529277),
|
|
FN_DECIMAL(-0.9898503007),
|
|
FN_DECIMAL(0.9036577593),
|
|
FN_DECIMAL(0.05162417479),
|
|
FN_DECIMAL(-0.02545330525),
|
|
FN_DECIMAL(-0.998045976),
|
|
FN_DECIMAL(-0.7021653386),
|
|
FN_DECIMAL(-0.4524967717),
|
|
FN_DECIMAL(-0.9939885256),
|
|
FN_DECIMAL(-0.4875625128),
|
|
FN_DECIMAL(-0.9657481729),
|
|
FN_DECIMAL(-0.7432567015),
|
|
FN_DECIMAL(0.02515761212),
|
|
FN_DECIMAL(0.4743044842),
|
|
FN_DECIMAL(0.5771254669),
|
|
FN_DECIMAL(0.4449408324),
|
|
FN_DECIMAL(0.3416365773),
|
|
FN_DECIMAL(0.9970960285),
|
|
FN_DECIMAL(0.6994034849),
|
|
FN_DECIMAL(0.4917517499),
|
|
FN_DECIMAL(0.286765333),
|
|
FN_DECIMAL(0.8713868327),
|
|
FN_DECIMAL(0.6172387009),
|
|
FN_DECIMAL(0.9941540269),
|
|
FN_DECIMAL(0.9632339851),
|
|
FN_DECIMAL(-0.7913613129),
|
|
FN_DECIMAL(0.847515538),
|
|
FN_DECIMAL(0.6211056739),
|
|
FN_DECIMAL(0.5171924952),
|
|
FN_DECIMAL(-0.8198283277),
|
|
FN_DECIMAL(-0.1832084353),
|
|
FN_DECIMAL(0.7054329737),
|
|
FN_DECIMAL(0.7325597678),
|
|
FN_DECIMAL(0.9960630973),
|
|
FN_DECIMAL(0.7419559859),
|
|
FN_DECIMAL(0.9908355749),
|
|
FN_DECIMAL(-0.346274329),
|
|
FN_DECIMAL(0.2192641299),
|
|
FN_DECIMAL(-0.9060627411),
|
|
FN_DECIMAL(-0.8683346653),
|
|
FN_DECIMAL(0.9949314574),
|
|
FN_DECIMAL(-0.6445220433),
|
|
FN_DECIMAL(-0.8103794704),
|
|
FN_DECIMAL(-0.2216977607),
|
|
FN_DECIMAL(0.7168515217),
|
|
FN_DECIMAL(0.612202264),
|
|
FN_DECIMAL(-0.412428616),
|
|
FN_DECIMAL(0.285325116),
|
|
FN_DECIMAL(0.56227115),
|
|
FN_DECIMAL(-0.9653857009),
|
|
FN_DECIMAL(-0.6290361962),
|
|
FN_DECIMAL(0.6491672535),
|
|
FN_DECIMAL(0.443835306),
|
|
FN_DECIMAL(-0.1791955706),
|
|
FN_DECIMAL(-0.6792690269),
|
|
FN_DECIMAL(-0.9763662173),
|
|
FN_DECIMAL(0.7391782104),
|
|
FN_DECIMAL(0.8343693968),
|
|
FN_DECIMAL(0.7238337389),
|
|
FN_DECIMAL(0.4965557504),
|
|
FN_DECIMAL(0.8075909592),
|
|
FN_DECIMAL(-0.4459769977),
|
|
FN_DECIMAL(-0.9331160806),
|
|
FN_DECIMAL(-0.5710019572),
|
|
FN_DECIMAL(0.9566512346),
|
|
FN_DECIMAL(-0.08357920318),
|
|
FN_DECIMAL(0.2146116448),
|
|
FN_DECIMAL(-0.6739348049),
|
|
FN_DECIMAL(0.8810115417),
|
|
FN_DECIMAL(0.4467718167),
|
|
FN_DECIMAL(-0.7196250184),
|
|
FN_DECIMAL(-0.749462481),
|
|
FN_DECIMAL(0.9960561112),
|
|
FN_DECIMAL(0.6600461127),
|
|
FN_DECIMAL(-0.8465566164),
|
|
FN_DECIMAL(-0.8525598897),
|
|
FN_DECIMAL(-0.9732775654),
|
|
FN_DECIMAL(0.6111293616),
|
|
FN_DECIMAL(-0.9612584717),
|
|
FN_DECIMAL(-0.7237870097),
|
|
FN_DECIMAL(-0.9974830104),
|
|
FN_DECIMAL(-0.8014006968),
|
|
FN_DECIMAL(0.9528814544),
|
|
FN_DECIMAL(-0.6884178931),
|
|
FN_DECIMAL(-0.1691668301),
|
|
FN_DECIMAL(0.9843571905),
|
|
FN_DECIMAL(0.7651544003),
|
|
FN_DECIMAL(-0.09355982605),
|
|
FN_DECIMAL(-0.5200134429),
|
|
FN_DECIMAL(-0.006202125807),
|
|
FN_DECIMAL(-0.9997683284),
|
|
FN_DECIMAL(0.4919944954),
|
|
FN_DECIMAL(-0.9928084436),
|
|
FN_DECIMAL(-0.1253880012),
|
|
FN_DECIMAL(-0.4165383308),
|
|
FN_DECIMAL(-0.6148930171),
|
|
FN_DECIMAL(-0.1034332049),
|
|
FN_DECIMAL(-0.9070022917),
|
|
FN_DECIMAL(-0.9503958117),
|
|
FN_DECIMAL(0.9151503065),
|
|
FN_DECIMAL(-0.6486716073),
|
|
FN_DECIMAL(0.6397687707),
|
|
FN_DECIMAL(-0.9883386937),
|
|
FN_DECIMAL(0.3507613761),
|
|
FN_DECIMAL(0.9857642561),
|
|
FN_DECIMAL(-0.9342026446),
|
|
FN_DECIMAL(-0.9082419159),
|
|
FN_DECIMAL(0.1560587169),
|
|
FN_DECIMAL(0.4921240607),
|
|
FN_DECIMAL(-0.453669308),
|
|
FN_DECIMAL(0.6818037859),
|
|
FN_DECIMAL(0.7976742329),
|
|
FN_DECIMAL(0.9098610522),
|
|
FN_DECIMAL(0.651633524),
|
|
FN_DECIMAL(0.7177318024),
|
|
FN_DECIMAL(-0.5528685241),
|
|
FN_DECIMAL(0.5882467118),
|
|
FN_DECIMAL(0.6593778956),
|
|
FN_DECIMAL(0.9371027648),
|
|
FN_DECIMAL(-0.7168658839),
|
|
FN_DECIMAL(-0.4757737632),
|
|
FN_DECIMAL(0.7648291307),
|
|
FN_DECIMAL(0.7503650398),
|
|
FN_DECIMAL(0.1705063456),
|
|
FN_DECIMAL(-0.8071558121),
|
|
FN_DECIMAL(-0.9951433815),
|
|
FN_DECIMAL(-0.8253280792),
|
|
FN_DECIMAL(-0.7982502628),
|
|
FN_DECIMAL(0.9352738503),
|
|
FN_DECIMAL(0.8582254747),
|
|
FN_DECIMAL(-0.3465310238),
|
|
FN_DECIMAL(0.65000842),
|
|
FN_DECIMAL(-0.6697422351),
|
|
FN_DECIMAL(0.7441962291),
|
|
FN_DECIMAL(-0.9533555),
|
|
FN_DECIMAL(0.5801940659),
|
|
FN_DECIMAL(-0.9992862963),
|
|
FN_DECIMAL(-0.659820211),
|
|
FN_DECIMAL(0.2575848092),
|
|
FN_DECIMAL(0.881588113),
|
|
FN_DECIMAL(-0.9004043022),
|
|
FN_DECIMAL(-0.7050172826),
|
|
FN_DECIMAL(0.369126382),
|
|
FN_DECIMAL(-0.02265088836),
|
|
FN_DECIMAL(0.5568217228),
|
|
FN_DECIMAL(-0.3316515286),
|
|
FN_DECIMAL(0.991098079),
|
|
FN_DECIMAL(-0.863212164),
|
|
FN_DECIMAL(-0.9285531277),
|
|
FN_DECIMAL(0.1695539323),
|
|
FN_DECIMAL(-0.672402505),
|
|
FN_DECIMAL(-0.001928841934),
|
|
FN_DECIMAL(0.9767452145),
|
|
FN_DECIMAL(-0.8767960349),
|
|
FN_DECIMAL(0.9103515037),
|
|
FN_DECIMAL(-0.7648324016),
|
|
FN_DECIMAL(0.2706960452),
|
|
FN_DECIMAL(-0.9830446035),
|
|
FN_DECIMAL(0.8150341657),
|
|
FN_DECIMAL(-0.9999013716),
|
|
FN_DECIMAL(-0.8985605806),
|
|
FN_DECIMAL(0.8533360801),
|
|
FN_DECIMAL(0.8491442537),
|
|
FN_DECIMAL(-0.2242541966),
|
|
FN_DECIMAL(-0.1379635899),
|
|
FN_DECIMAL(-0.4145572694),
|
|
FN_DECIMAL(0.1308227633),
|
|
FN_DECIMAL(0.6140555916),
|
|
FN_DECIMAL(0.9417041303),
|
|
FN_DECIMAL(-0.336705587),
|
|
FN_DECIMAL(-0.6254387508),
|
|
FN_DECIMAL(0.4631060578),
|
|
FN_DECIMAL(-0.7578342456),
|
|
FN_DECIMAL(-0.8172955655),
|
|
FN_DECIMAL(-0.9959529228),
|
|
FN_DECIMAL(-0.9760151351),
|
|
FN_DECIMAL(0.2348380732),
|
|
FN_DECIMAL(-0.9983612848),
|
|
FN_DECIMAL(0.5856025746),
|
|
FN_DECIMAL(-0.9400538266),
|
|
FN_DECIMAL(-0.7639875669),
|
|
FN_DECIMAL(0.6244544645),
|
|
FN_DECIMAL(0.04604054566),
|
|
FN_DECIMAL(0.5888424828),
|
|
FN_DECIMAL(0.7708490978),
|
|
FN_DECIMAL(-0.8114182882),
|
|
FN_DECIMAL(0.9786766212),
|
|
FN_DECIMAL(-0.9984329822),
|
|
FN_DECIMAL(0.09125496582),
|
|
FN_DECIMAL(-0.4492438803),
|
|
FN_DECIMAL(-0.3636982357),
|
|
FN_DECIMAL(0.9443405575),
|
|
FN_DECIMAL(-0.9476254645),
|
|
FN_DECIMAL(-0.6818676535),
|
|
FN_DECIMAL(-0.6113610831),
|
|
FN_DECIMAL(0.9754070948),
|
|
FN_DECIMAL(-0.0938108173),
|
|
FN_DECIMAL(-0.7029540015),
|
|
FN_DECIMAL(-0.6085691109),
|
|
FN_DECIMAL(-0.08718862881),
|
|
FN_DECIMAL(-0.237381926),
|
|
FN_DECIMAL(0.2913423132),
|
|
FN_DECIMAL(0.9614872426),
|
|
FN_DECIMAL(0.8836361266),
|
|
FN_DECIMAL(-0.2749974196),
|
|
FN_DECIMAL(-0.8108932717),
|
|
FN_DECIMAL(-0.8913607575),
|
|
FN_DECIMAL(0.129255541),
|
|
FN_DECIMAL(-0.3342637104),
|
|
FN_DECIMAL(-0.1921249337),
|
|
FN_DECIMAL(-0.7566302845),
|
|
FN_DECIMAL(-0.9563164339),
|
|
FN_DECIMAL(-0.9744358146),
|
|
FN_DECIMAL(0.9836522982),
|
|
FN_DECIMAL(-0.2863615732),
|
|
FN_DECIMAL(0.8337016872),
|
|
FN_DECIMAL(0.3683701937),
|
|
FN_DECIMAL(0.7657119102),
|
|
FN_DECIMAL(-0.02312427772),
|
|
FN_DECIMAL(0.8875600535),
|
|
FN_DECIMAL(0.976642191),
|
|
FN_DECIMAL(0.9374176384),
|
|
FN_DECIMAL(0.9515313457),
|
|
FN_DECIMAL(-0.7786361937),
|
|
FN_DECIMAL(-0.4538302125),
|
|
FN_DECIMAL(-0.7685604874),
|
|
FN_DECIMAL(-0.8940796454),
|
|
FN_DECIMAL(-0.8512462154),
|
|
FN_DECIMAL(0.5446696133),
|
|
FN_DECIMAL(0.9207601495),
|
|
FN_DECIMAL(-0.9893091197),
|
|
FN_DECIMAL(-0.9998680229),
|
|
FN_DECIMAL(0.5617309299),
|
|
FN_DECIMAL(-0.8277411985),
|
|
FN_DECIMAL(0.545636467),
|
|
FN_DECIMAL(0.1690223212),
|
|
FN_DECIMAL(-0.5079295433),
|
|
FN_DECIMAL(0.7685069899),
|
|
FN_DECIMAL(-0.9630140787),
|
|
FN_DECIMAL(0.9015219132),
|
|
FN_DECIMAL(0.08905695279),
|
|
FN_DECIMAL(-0.3423550559),
|
|
FN_DECIMAL(-0.4661614943),
|
|
FN_DECIMAL(-0.6449659371),
|
|
FN_DECIMAL(0.7139388509),
|
|
FN_DECIMAL(0.7472809229),
|
|
};
|
|
const FN_DECIMAL CELL_3D_X[] = {
|
|
FN_DECIMAL(0.3752498686),
|
|
FN_DECIMAL(0.687188096),
|
|
FN_DECIMAL(0.2248135212),
|
|
FN_DECIMAL(0.6692006647),
|
|
FN_DECIMAL(-0.4376476931),
|
|
FN_DECIMAL(0.6139972552),
|
|
FN_DECIMAL(0.9494563929),
|
|
FN_DECIMAL(0.8065108882),
|
|
FN_DECIMAL(-0.2218812853),
|
|
FN_DECIMAL(0.8484661167),
|
|
FN_DECIMAL(0.5551817596),
|
|
FN_DECIMAL(0.2133903499),
|
|
FN_DECIMAL(0.5195126593),
|
|
FN_DECIMAL(-0.6440141975),
|
|
FN_DECIMAL(-0.5192897331),
|
|
FN_DECIMAL(-0.3697654077),
|
|
FN_DECIMAL(-0.07927779647),
|
|
FN_DECIMAL(0.4187757321),
|
|
FN_DECIMAL(-0.750078731),
|
|
FN_DECIMAL(0.6579554632),
|
|
FN_DECIMAL(-0.6859803838),
|
|
FN_DECIMAL(-0.6878407087),
|
|
FN_DECIMAL(0.9490848347),
|
|
FN_DECIMAL(0.5795829433),
|
|
FN_DECIMAL(-0.5325976529),
|
|
FN_DECIMAL(-0.1363699466),
|
|
FN_DECIMAL(0.417665879),
|
|
FN_DECIMAL(-0.9108236468),
|
|
FN_DECIMAL(0.4438605427),
|
|
FN_DECIMAL(0.819294887),
|
|
FN_DECIMAL(-0.4033873915),
|
|
FN_DECIMAL(-0.2817317705),
|
|
FN_DECIMAL(0.3969665622),
|
|
FN_DECIMAL(0.5323450134),
|
|
FN_DECIMAL(-0.6833017297),
|
|
FN_DECIMAL(0.3881436661),
|
|
FN_DECIMAL(-0.7119144767),
|
|
FN_DECIMAL(-0.2306979838),
|
|
FN_DECIMAL(-0.9398873022),
|
|
FN_DECIMAL(0.1701906676),
|
|
FN_DECIMAL(-0.4261839496),
|
|
FN_DECIMAL(-0.003712295499),
|
|
FN_DECIMAL(-0.734675004),
|
|
FN_DECIMAL(-0.3195046015),
|
|
FN_DECIMAL(0.7345307424),
|
|
FN_DECIMAL(0.9766246496),
|
|
FN_DECIMAL(-0.02003735175),
|
|
FN_DECIMAL(-0.4824156342),
|
|
FN_DECIMAL(0.4245892007),
|
|
FN_DECIMAL(0.9072427669),
|
|
FN_DECIMAL(0.593346808),
|
|
FN_DECIMAL(-0.8911762541),
|
|
FN_DECIMAL(-0.7657571834),
|
|
FN_DECIMAL(-0.5268198896),
|
|
FN_DECIMAL(-0.8801903279),
|
|
FN_DECIMAL(-0.6296409617),
|
|
FN_DECIMAL(-0.09492481344),
|
|
FN_DECIMAL(-0.4920470525),
|
|
FN_DECIMAL(0.7307666154),
|
|
FN_DECIMAL(-0.2514540636),
|
|
FN_DECIMAL(-0.3356210347),
|
|
FN_DECIMAL(-0.3522787894),
|
|
FN_DECIMAL(0.87847885),
|
|
FN_DECIMAL(-0.7424096346),
|
|
FN_DECIMAL(0.5757585274),
|
|
FN_DECIMAL(0.4519299338),
|
|
FN_DECIMAL(0.6420368628),
|
|
FN_DECIMAL(-0.1128478447),
|
|
FN_DECIMAL(0.499874883),
|
|
FN_DECIMAL(0.5291681739),
|
|
FN_DECIMAL(-0.5098837195),
|
|
FN_DECIMAL(0.5639583502),
|
|
FN_DECIMAL(-0.8456386526),
|
|
FN_DECIMAL(-0.9657134875),
|
|
FN_DECIMAL(-0.576437342),
|
|
FN_DECIMAL(-0.5666013014),
|
|
FN_DECIMAL(0.5667702405),
|
|
FN_DECIMAL(-0.481316582),
|
|
FN_DECIMAL(0.7313389916),
|
|
FN_DECIMAL(-0.3805628566),
|
|
FN_DECIMAL(-0.6512675909),
|
|
FN_DECIMAL(-0.2787156951),
|
|
FN_DECIMAL(0.8648059114),
|
|
FN_DECIMAL(-0.9730216276),
|
|
FN_DECIMAL(-0.8335820906),
|
|
FN_DECIMAL(0.2673159641),
|
|
FN_DECIMAL(0.231150148),
|
|
FN_DECIMAL(0.01286214638),
|
|
FN_DECIMAL(0.6774953261),
|
|
FN_DECIMAL(0.6542885718),
|
|
FN_DECIMAL(-0.02545450161),
|
|
FN_DECIMAL(0.2101238586),
|
|
FN_DECIMAL(-0.5572105885),
|
|
FN_DECIMAL(0.813705672),
|
|
FN_DECIMAL(-0.7546026951),
|
|
FN_DECIMAL(-0.2502500006),
|
|
FN_DECIMAL(-0.9979289381),
|
|
FN_DECIMAL(0.7024037039),
|
|
FN_DECIMAL(0.08990874624),
|
|
FN_DECIMAL(0.8170812432),
|
|
FN_DECIMAL(0.4226980265),
|
|
FN_DECIMAL(-0.2442153475),
|
|
FN_DECIMAL(-0.9183326731),
|
|
FN_DECIMAL(0.6068222411),
|
|
FN_DECIMAL(0.818676691),
|
|
FN_DECIMAL(-0.7236735282),
|
|
FN_DECIMAL(-0.5383903295),
|
|
FN_DECIMAL(-0.6269337242),
|
|
FN_DECIMAL(-0.0939331121),
|
|
FN_DECIMAL(0.9203878539),
|
|
FN_DECIMAL(-0.7256396824),
|
|
FN_DECIMAL(0.6292431149),
|
|
FN_DECIMAL(0.4234156978),
|
|
FN_DECIMAL(0.006685688024),
|
|
FN_DECIMAL(-0.2598694113),
|
|
FN_DECIMAL(0.6408036421),
|
|
FN_DECIMAL(0.05899871622),
|
|
FN_DECIMAL(0.7090281418),
|
|
FN_DECIMAL(-0.5905222072),
|
|
FN_DECIMAL(0.3128214264),
|
|
FN_DECIMAL(-0.691925826),
|
|
FN_DECIMAL(0.3634019349),
|
|
FN_DECIMAL(-0.6772511147),
|
|
FN_DECIMAL(-0.3204583896),
|
|
FN_DECIMAL(-0.3906740409),
|
|
FN_DECIMAL(-0.3342190395),
|
|
FN_DECIMAL(-0.517779592),
|
|
FN_DECIMAL(-0.6817711267),
|
|
FN_DECIMAL(0.6422383105),
|
|
FN_DECIMAL(0.4388482478),
|
|
FN_DECIMAL(0.2968562611),
|
|
FN_DECIMAL(-0.2019778353),
|
|
FN_DECIMAL(0.6014865048),
|
|
FN_DECIMAL(0.9519280722),
|
|
FN_DECIMAL(0.3398889569),
|
|
FN_DECIMAL(0.8179709354),
|
|
FN_DECIMAL(0.2365522154),
|
|
FN_DECIMAL(0.3262175096),
|
|
FN_DECIMAL(-0.8060715954),
|
|
FN_DECIMAL(-0.2068642503),
|
|
FN_DECIMAL(0.6208057279),
|
|
FN_DECIMAL(-0.5274282502),
|
|
FN_DECIMAL(-0.3722334928),
|
|
FN_DECIMAL(-0.8923412971),
|
|
FN_DECIMAL(0.5341834201),
|
|
FN_DECIMAL(-0.3663701513),
|
|
FN_DECIMAL(-0.6114600319),
|
|
FN_DECIMAL(0.5026307556),
|
|
FN_DECIMAL(0.8396151729),
|
|
FN_DECIMAL(0.9245042467),
|
|
FN_DECIMAL(-0.7994843957),
|
|
FN_DECIMAL(-0.5357200589),
|
|
FN_DECIMAL(-0.6283359739),
|
|
FN_DECIMAL(-0.61351886),
|
|
FN_DECIMAL(-0.875632008),
|
|
FN_DECIMAL(-0.5278879423),
|
|
FN_DECIMAL(0.9087491985),
|
|
FN_DECIMAL(-0.03500215466),
|
|
FN_DECIMAL(-0.261365798),
|
|
FN_DECIMAL(-0.579523541),
|
|
FN_DECIMAL(-0.3765052689),
|
|
FN_DECIMAL(-0.74398252),
|
|
FN_DECIMAL(0.4257318052),
|
|
FN_DECIMAL(-0.1214508921),
|
|
FN_DECIMAL(0.8561809753),
|
|
FN_DECIMAL(0.6802835104),
|
|
FN_DECIMAL(-0.5452131039),
|
|
FN_DECIMAL(-0.1997156478),
|
|
FN_DECIMAL(0.4562348357),
|
|
FN_DECIMAL(-0.811704301),
|
|
FN_DECIMAL(0.67793962),
|
|
FN_DECIMAL(-0.9237819106),
|
|
FN_DECIMAL(0.6973511259),
|
|
FN_DECIMAL(-0.5189506),
|
|
FN_DECIMAL(0.5517320032),
|
|
FN_DECIMAL(-0.396710831),
|
|
FN_DECIMAL(0.5493762815),
|
|
FN_DECIMAL(-0.2507853002),
|
|
FN_DECIMAL(0.4788634005),
|
|
FN_DECIMAL(0.387333516),
|
|
FN_DECIMAL(-0.2176515694),
|
|
FN_DECIMAL(0.6749832419),
|
|
FN_DECIMAL(0.2148283022),
|
|
FN_DECIMAL(-0.7521815872),
|
|
FN_DECIMAL(0.4697000159),
|
|
FN_DECIMAL(0.7890593699),
|
|
FN_DECIMAL(-0.7606162952),
|
|
FN_DECIMAL(0.01083397843),
|
|
FN_DECIMAL(0.5254091908),
|
|
FN_DECIMAL(-0.6748025877),
|
|
FN_DECIMAL(0.751091524),
|
|
FN_DECIMAL(0.05259056135),
|
|
FN_DECIMAL(0.01889481232),
|
|
FN_DECIMAL(-0.6037423727),
|
|
FN_DECIMAL(-0.6542965129),
|
|
FN_DECIMAL(0.08873301081),
|
|
FN_DECIMAL(-0.6191345671),
|
|
FN_DECIMAL(0.4331858488),
|
|
FN_DECIMAL(-0.3858351946),
|
|
FN_DECIMAL(-0.1429059747),
|
|
FN_DECIMAL(0.4118221036),
|
|
FN_DECIMAL(-0.6247153214),
|
|
FN_DECIMAL(-0.611423014),
|
|
FN_DECIMAL(0.5542939606),
|
|
FN_DECIMAL(-0.9432768808),
|
|
FN_DECIMAL(-0.4567870451),
|
|
FN_DECIMAL(-0.7349133547),
|
|
FN_DECIMAL(0.399304489),
|
|
FN_DECIMAL(-0.7474927672),
|
|
FN_DECIMAL(0.02589419753),
|
|
FN_DECIMAL(0.783915821),
|
|
FN_DECIMAL(0.6138668752),
|
|
FN_DECIMAL(0.4276376047),
|
|
FN_DECIMAL(-0.4347886353),
|
|
FN_DECIMAL(0.02947841302),
|
|
FN_DECIMAL(-0.833742746),
|
|
FN_DECIMAL(0.3817221742),
|
|
FN_DECIMAL(-0.8743368359),
|
|
FN_DECIMAL(-0.3823443796),
|
|
FN_DECIMAL(-0.6829243811),
|
|
FN_DECIMAL(-0.3681903049),
|
|
FN_DECIMAL(-0.367626833),
|
|
FN_DECIMAL(-0.434583373),
|
|
FN_DECIMAL(0.235891995),
|
|
FN_DECIMAL(-0.6874880269),
|
|
FN_DECIMAL(-0.5115661773),
|
|
FN_DECIMAL(-0.5534962601),
|
|
FN_DECIMAL(0.5632777056),
|
|
FN_DECIMAL(0.686191532),
|
|
FN_DECIMAL(-0.05095871588),
|
|
FN_DECIMAL(-0.06865785057),
|
|
FN_DECIMAL(-0.5975288531),
|
|
FN_DECIMAL(-0.6429790056),
|
|
FN_DECIMAL(-0.3729361548),
|
|
FN_DECIMAL(0.2237917666),
|
|
FN_DECIMAL(0.6046773225),
|
|
FN_DECIMAL(-0.5041542295),
|
|
FN_DECIMAL(-0.03972191174),
|
|
FN_DECIMAL(0.7028828406),
|
|
FN_DECIMAL(-0.5560856498),
|
|
FN_DECIMAL(0.5898328456),
|
|
FN_DECIMAL(-0.9308076766),
|
|
FN_DECIMAL(0.4617069864),
|
|
FN_DECIMAL(0.3190983137),
|
|
FN_DECIMAL(0.9116567753),
|
|
FN_DECIMAL(-0.45029554),
|
|
FN_DECIMAL(0.3346334459),
|
|
FN_DECIMAL(0.8525005645),
|
|
FN_DECIMAL(0.2528483381),
|
|
FN_DECIMAL(-0.8306630147),
|
|
FN_DECIMAL(-0.6880390622),
|
|
FN_DECIMAL(0.7448684026),
|
|
FN_DECIMAL(-0.1963355843),
|
|
FN_DECIMAL(-0.5900257974),
|
|
FN_DECIMAL(0.9097057294),
|
|
FN_DECIMAL(-0.2509196808),
|
|
};
|
|
const FN_DECIMAL CELL_3D_Y[] = {
|
|
FN_DECIMAL(-0.6760585049),
|
|
FN_DECIMAL(-0.09136176499),
|
|
FN_DECIMAL(0.1681325679),
|
|
FN_DECIMAL(-0.6688468686),
|
|
FN_DECIMAL(-0.4822753902),
|
|
FN_DECIMAL(-0.7891068824),
|
|
FN_DECIMAL(-0.1877509944),
|
|
FN_DECIMAL(0.548470914),
|
|
FN_DECIMAL(-0.463339443),
|
|
FN_DECIMAL(-0.4050542082),
|
|
FN_DECIMAL(0.3218158513),
|
|
FN_DECIMAL(0.2546493823),
|
|
FN_DECIMAL(-0.3753271935),
|
|
FN_DECIMAL(0.4745384887),
|
|
FN_DECIMAL(0.481254652),
|
|
FN_DECIMAL(-0.8934416489),
|
|
FN_DECIMAL(-0.6737085076),
|
|
FN_DECIMAL(0.7469917228),
|
|
FN_DECIMAL(0.3826230411),
|
|
FN_DECIMAL(0.6751013678),
|
|
FN_DECIMAL(-0.7248119515),
|
|
FN_DECIMAL(-0.3224276742),
|
|
FN_DECIMAL(-0.02076190936),
|
|
FN_DECIMAL(-0.6404268166),
|
|
FN_DECIMAL(-0.5292028444),
|
|
FN_DECIMAL(0.7151414636),
|
|
FN_DECIMAL(-0.6144655059),
|
|
FN_DECIMAL(-0.369912124),
|
|
FN_DECIMAL(0.6942067212),
|
|
FN_DECIMAL(-0.4481558248),
|
|
FN_DECIMAL(-0.6366894559),
|
|
FN_DECIMAL(0.5956568471),
|
|
FN_DECIMAL(0.564274539),
|
|
FN_DECIMAL(0.7145584688),
|
|
FN_DECIMAL(0.6871918316),
|
|
FN_DECIMAL(0.5657918509),
|
|
FN_DECIMAL(-0.6275978114),
|
|
FN_DECIMAL(0.4146983062),
|
|
FN_DECIMAL(0.2638993789),
|
|
FN_DECIMAL(-0.792633138),
|
|
FN_DECIMAL(0.5706133514),
|
|
FN_DECIMAL(0.8606546462),
|
|
FN_DECIMAL(0.6490900316),
|
|
FN_DECIMAL(-0.8242699196),
|
|
FN_DECIMAL(0.6765819124),
|
|
FN_DECIMAL(0.1959534069),
|
|
FN_DECIMAL(-0.8426769757),
|
|
FN_DECIMAL(-0.5917672797),
|
|
FN_DECIMAL(0.7517364266),
|
|
FN_DECIMAL(0.03252559226),
|
|
FN_DECIMAL(0.0883617105),
|
|
FN_DECIMAL(0.4475064813),
|
|
FN_DECIMAL(-0.1418643552),
|
|
FN_DECIMAL(0.7343428473),
|
|
FN_DECIMAL(0.3870192548),
|
|
FN_DECIMAL(-0.7716703522),
|
|
FN_DECIMAL(0.4839898327),
|
|
FN_DECIMAL(0.7437439055),
|
|
FN_DECIMAL(-0.5989573348),
|
|
FN_DECIMAL(-0.8357068955),
|
|
FN_DECIMAL(0.6086049038),
|
|
FN_DECIMAL(0.9194627258),
|
|
FN_DECIMAL(0.4718297238),
|
|
FN_DECIMAL(-0.2650335884),
|
|
FN_DECIMAL(-0.6470352599),
|
|
FN_DECIMAL(-0.5555181303),
|
|
FN_DECIMAL(0.1222351235),
|
|
FN_DECIMAL(0.7802044684),
|
|
FN_DECIMAL(-0.8636947022),
|
|
FN_DECIMAL(-0.2341352163),
|
|
FN_DECIMAL(0.683030874),
|
|
FN_DECIMAL(-0.5005858287),
|
|
FN_DECIMAL(0.2334616211),
|
|
FN_DECIMAL(0.2576877608),
|
|
FN_DECIMAL(0.6666816727),
|
|
FN_DECIMAL(-0.7663996863),
|
|
FN_DECIMAL(0.794201982),
|
|
FN_DECIMAL(0.6189308788),
|
|
FN_DECIMAL(0.6071033261),
|
|
FN_DECIMAL(-0.4206058253),
|
|
FN_DECIMAL(-0.3957336915),
|
|
FN_DECIMAL(-0.8170257484),
|
|
FN_DECIMAL(-0.1043240417),
|
|
FN_DECIMAL(0.0002167596213),
|
|
FN_DECIMAL(0.1816339018),
|
|
FN_DECIMAL(-0.6838094939),
|
|
FN_DECIMAL(-0.2495341969),
|
|
FN_DECIMAL(-0.7116756954),
|
|
FN_DECIMAL(-0.03361673621),
|
|
FN_DECIMAL(-0.3350836431),
|
|
FN_DECIMAL(0.2137186039),
|
|
FN_DECIMAL(0.2557996786),
|
|
FN_DECIMAL(0.7490117093),
|
|
FN_DECIMAL(0.4942936549),
|
|
FN_DECIMAL(-0.352686853),
|
|
FN_DECIMAL(-0.3952445435),
|
|
FN_DECIMAL(-0.0459964767),
|
|
FN_DECIMAL(-0.7115787471),
|
|
FN_DECIMAL(0.08022899756),
|
|
FN_DECIMAL(0.5362268157),
|
|
FN_DECIMAL(-0.8258613686),
|
|
FN_DECIMAL(0.1114171723),
|
|
FN_DECIMAL(0.3882823051),
|
|
FN_DECIMAL(-0.7915404457),
|
|
FN_DECIMAL(0.3250957662),
|
|
FN_DECIMAL(0.6401346464),
|
|
FN_DECIMAL(-0.2662724517),
|
|
FN_DECIMAL(-0.6727907114),
|
|
FN_DECIMAL(-0.994730818),
|
|
FN_DECIMAL(-0.3596358977),
|
|
FN_DECIMAL(0.2344610069),
|
|
FN_DECIMAL(-0.6645215546),
|
|
FN_DECIMAL(-0.7107590611),
|
|
FN_DECIMAL(-0.4646617327),
|
|
FN_DECIMAL(0.6717191355),
|
|
FN_DECIMAL(0.5101893498),
|
|
FN_DECIMAL(0.1185768238),
|
|
FN_DECIMAL(0.236005093),
|
|
FN_DECIMAL(-0.7811024061),
|
|
FN_DECIMAL(0.5089325193),
|
|
FN_DECIMAL(0.6073187658),
|
|
FN_DECIMAL(-0.7930732557),
|
|
FN_DECIMAL(-0.6822767155),
|
|
FN_DECIMAL(0.3201532885),
|
|
FN_DECIMAL(0.7545302807),
|
|
FN_DECIMAL(0.1072664448),
|
|
FN_DECIMAL(0.6784033173),
|
|
FN_DECIMAL(-0.6595924967),
|
|
FN_DECIMAL(0.7276509498),
|
|
FN_DECIMAL(0.5586689436),
|
|
FN_DECIMAL(-0.6498636788),
|
|
FN_DECIMAL(0.6789333174),
|
|
FN_DECIMAL(0.7105966551),
|
|
FN_DECIMAL(-0.2872214155),
|
|
FN_DECIMAL(0.496746217),
|
|
FN_DECIMAL(-0.3880337977),
|
|
FN_DECIMAL(0.7324070604),
|
|
FN_DECIMAL(-0.9326634749),
|
|
FN_DECIMAL(-0.5867839255),
|
|
FN_DECIMAL(0.8003043651),
|
|
FN_DECIMAL(-0.1631882481),
|
|
FN_DECIMAL(-0.6796374681),
|
|
FN_DECIMAL(-0.8066678503),
|
|
FN_DECIMAL(0.4238177418),
|
|
FN_DECIMAL(0.7715863549),
|
|
FN_DECIMAL(0.5455367347),
|
|
FN_DECIMAL(-0.03205115397),
|
|
FN_DECIMAL(-0.6005545066),
|
|
FN_DECIMAL(-0.5423640002),
|
|
FN_DECIMAL(0.3569205906),
|
|
FN_DECIMAL(-0.582071752),
|
|
FN_DECIMAL(0.6407354361),
|
|
FN_DECIMAL(0.7777142984),
|
|
FN_DECIMAL(-0.09956428618),
|
|
FN_DECIMAL(0.1100002681),
|
|
FN_DECIMAL(0.8136349123),
|
|
FN_DECIMAL(0.2923431904),
|
|
FN_DECIMAL(0.9735794425),
|
|
FN_DECIMAL(0.8324974864),
|
|
FN_DECIMAL(-0.6179617717),
|
|
FN_DECIMAL(-0.9248386523),
|
|
FN_DECIMAL(-0.6448780771),
|
|
FN_DECIMAL(-0.5274402761),
|
|
FN_DECIMAL(-0.7862170565),
|
|
FN_DECIMAL(0.2682099744),
|
|
FN_DECIMAL(-0.5848777694),
|
|
FN_DECIMAL(-0.6364561467),
|
|
FN_DECIMAL(-0.7167402514),
|
|
FN_DECIMAL(-0.8677012494),
|
|
FN_DECIMAL(0.4205286707),
|
|
FN_DECIMAL(-0.7007832749),
|
|
FN_DECIMAL(0.243272451),
|
|
FN_DECIMAL(-0.1899846085),
|
|
FN_DECIMAL(-0.6146124977),
|
|
FN_DECIMAL(-0.8093357692),
|
|
FN_DECIMAL(-0.03545096987),
|
|
FN_DECIMAL(-0.7191590868),
|
|
FN_DECIMAL(0.7478645848),
|
|
FN_DECIMAL(0.3623517328),
|
|
FN_DECIMAL(0.8436992512),
|
|
FN_DECIMAL(-0.2445711729),
|
|
FN_DECIMAL(0.6897356637),
|
|
FN_DECIMAL(-0.1708070787),
|
|
FN_DECIMAL(0.4639272368),
|
|
FN_DECIMAL(-0.7917186656),
|
|
FN_DECIMAL(0.02980025428),
|
|
FN_DECIMAL(0.6334156172),
|
|
FN_DECIMAL(-0.9815544807),
|
|
FN_DECIMAL(-0.2307217304),
|
|
FN_DECIMAL(0.1080823318),
|
|
FN_DECIMAL(0.5167601798),
|
|
FN_DECIMAL(-0.845120016),
|
|
FN_DECIMAL(0.441572562),
|
|
FN_DECIMAL(0.5876789172),
|
|
FN_DECIMAL(-0.6365908737),
|
|
FN_DECIMAL(0.68350166),
|
|
FN_DECIMAL(0.5849723959),
|
|
FN_DECIMAL(0.1164114357),
|
|
FN_DECIMAL(-0.7379813884),
|
|
FN_DECIMAL(-0.9613237178),
|
|
FN_DECIMAL(-0.9071943084),
|
|
FN_DECIMAL(-0.7682111105),
|
|
FN_DECIMAL(0.639074459),
|
|
FN_DECIMAL(-0.619358298),
|
|
FN_DECIMAL(0.2807257131),
|
|
FN_DECIMAL(-0.01800868791),
|
|
FN_DECIMAL(0.3776607289),
|
|
FN_DECIMAL(0.7207567823),
|
|
FN_DECIMAL(0.5536661486),
|
|
FN_DECIMAL(-0.9974053117),
|
|
FN_DECIMAL(-0.02047200006),
|
|
FN_DECIMAL(-0.6739453804),
|
|
FN_DECIMAL(-0.5607471297),
|
|
FN_DECIMAL(0.8815553192),
|
|
FN_DECIMAL(0.8275977415),
|
|
FN_DECIMAL(0.3928902456),
|
|
FN_DECIMAL(0.550991396),
|
|
FN_DECIMAL(0.4247623676),
|
|
FN_DECIMAL(-0.3436948871),
|
|
FN_DECIMAL(-0.3653537677),
|
|
FN_DECIMAL(0.3181702902),
|
|
FN_DECIMAL(-0.6067173171),
|
|
FN_DECIMAL(-0.8984128477),
|
|
FN_DECIMAL(0.4220839766),
|
|
FN_DECIMAL(0.7238407199),
|
|
FN_DECIMAL(-0.7766913695),
|
|
FN_DECIMAL(0.6460037842),
|
|
FN_DECIMAL(0.2544775664),
|
|
FN_DECIMAL(0.6488840578),
|
|
FN_DECIMAL(0.805016833),
|
|
FN_DECIMAL(-0.9183807036),
|
|
FN_DECIMAL(0.4144046357),
|
|
FN_DECIMAL(0.270587208),
|
|
FN_DECIMAL(-0.8813684494),
|
|
FN_DECIMAL(0.6985971877),
|
|
FN_DECIMAL(-0.7795603017),
|
|
FN_DECIMAL(-0.8624480731),
|
|
FN_DECIMAL(0.5532697017),
|
|
FN_DECIMAL(0.711179521),
|
|
FN_DECIMAL(-0.7798160574),
|
|
FN_DECIMAL(0.5225859041),
|
|
FN_DECIMAL(0.1261859368),
|
|
FN_DECIMAL(0.3398033582),
|
|
FN_DECIMAL(-0.7472173667),
|
|
FN_DECIMAL(-0.4032647119),
|
|
FN_DECIMAL(-0.4246578154),
|
|
FN_DECIMAL(0.8481212377),
|
|
FN_DECIMAL(-0.2144838537),
|
|
FN_DECIMAL(0.3431714491),
|
|
FN_DECIMAL(0.5310188231),
|
|
FN_DECIMAL(0.6682978632),
|
|
FN_DECIMAL(0.3110433206),
|
|
FN_DECIMAL(0.9263293599),
|
|
FN_DECIMAL(-0.6155600569),
|
|
FN_DECIMAL(0.07169784399),
|
|
FN_DECIMAL(0.8985888773),
|
|
};
|
|
const FN_DECIMAL CELL_3D_Z[] = {
|
|
FN_DECIMAL(-0.6341391283),
|
|
FN_DECIMAL(-0.7207118346),
|
|
FN_DECIMAL(0.9597866014),
|
|
FN_DECIMAL(0.3237504235),
|
|
FN_DECIMAL(-0.7588642466),
|
|
FN_DECIMAL(-0.01782410481),
|
|
FN_DECIMAL(0.2515593809),
|
|
FN_DECIMAL(0.2207257205),
|
|
FN_DECIMAL(-0.8579541106),
|
|
FN_DECIMAL(0.3406410681),
|
|
FN_DECIMAL(0.7669470462),
|
|
FN_DECIMAL(-0.9431957648),
|
|
FN_DECIMAL(0.7676171537),
|
|
FN_DECIMAL(-0.6000491115),
|
|
FN_DECIMAL(-0.7062096948),
|
|
FN_DECIMAL(0.2550207115),
|
|
FN_DECIMAL(0.7347325213),
|
|
FN_DECIMAL(0.5163625202),
|
|
FN_DECIMAL(-0.5394270162),
|
|
FN_DECIMAL(0.3336656285),
|
|
FN_DECIMAL(-0.0638635111),
|
|
FN_DECIMAL(-0.6503195787),
|
|
FN_DECIMAL(0.3143356798),
|
|
FN_DECIMAL(-0.5039217245),
|
|
FN_DECIMAL(0.6605180464),
|
|
FN_DECIMAL(-0.6855479011),
|
|
FN_DECIMAL(-0.6693185756),
|
|
FN_DECIMAL(0.1832083647),
|
|
FN_DECIMAL(-0.5666258437),
|
|
FN_DECIMAL(0.3576482138),
|
|
FN_DECIMAL(-0.6571949095),
|
|
FN_DECIMAL(-0.7522101635),
|
|
FN_DECIMAL(-0.7238865886),
|
|
FN_DECIMAL(0.4538887323),
|
|
FN_DECIMAL(0.2467106257),
|
|
FN_DECIMAL(0.7274778869),
|
|
FN_DECIMAL(0.3151170655),
|
|
FN_DECIMAL(-0.8802293764),
|
|
FN_DECIMAL(-0.2167232729),
|
|
FN_DECIMAL(0.5854637865),
|
|
FN_DECIMAL(0.7019741052),
|
|
FN_DECIMAL(0.5091756071),
|
|
FN_DECIMAL(0.1973189533),
|
|
FN_DECIMAL(0.46743546),
|
|
FN_DECIMAL(0.05197599597),
|
|
FN_DECIMAL(0.088354718),
|
|
FN_DECIMAL(0.5380464843),
|
|
FN_DECIMAL(-0.6458224544),
|
|
FN_DECIMAL(-0.5045952393),
|
|
FN_DECIMAL(0.419347884),
|
|
FN_DECIMAL(0.8000823542),
|
|
FN_DECIMAL(-0.07445020656),
|
|
FN_DECIMAL(-0.6272881641),
|
|
FN_DECIMAL(-0.428020311),
|
|
FN_DECIMAL(-0.2747382083),
|
|
FN_DECIMAL(-0.08987283726),
|
|
FN_DECIMAL(0.8699098354),
|
|
FN_DECIMAL(0.4524761885),
|
|
FN_DECIMAL(-0.3274603257),
|
|
FN_DECIMAL(0.4882262167),
|
|
FN_DECIMAL(-0.7189983256),
|
|
FN_DECIMAL(0.1746079907),
|
|
FN_DECIMAL(0.0751772698),
|
|
FN_DECIMAL(-0.6152927202),
|
|
FN_DECIMAL(0.4998474673),
|
|
FN_DECIMAL(-0.6979677227),
|
|
FN_DECIMAL(0.7568667263),
|
|
FN_DECIMAL(-0.6152612058),
|
|
FN_DECIMAL(0.06447140991),
|
|
FN_DECIMAL(-0.8155744872),
|
|
FN_DECIMAL(-0.5229602449),
|
|
FN_DECIMAL(0.6567836838),
|
|
FN_DECIMAL(-0.4799905631),
|
|
FN_DECIMAL(0.03153534591),
|
|
FN_DECIMAL(0.4724992466),
|
|
FN_DECIMAL(-0.3026458097),
|
|
FN_DECIMAL(-0.2191225827),
|
|
FN_DECIMAL(-0.620692287),
|
|
FN_DECIMAL(0.3107552588),
|
|
FN_DECIMAL(0.8235670294),
|
|
FN_DECIMAL(0.6474915988),
|
|
FN_DECIMAL(-0.5047637941),
|
|
FN_DECIMAL(0.4911488878),
|
|
FN_DECIMAL(-0.2307138167),
|
|
FN_DECIMAL(-0.5216800015),
|
|
FN_DECIMAL(0.6789305939),
|
|
FN_DECIMAL(0.9403734863),
|
|
FN_DECIMAL(0.702390397),
|
|
FN_DECIMAL(0.7347584625),
|
|
FN_DECIMAL(0.6779567958),
|
|
FN_DECIMAL(0.9765635805),
|
|
FN_DECIMAL(-0.9436177661),
|
|
FN_DECIMAL(-0.358465925),
|
|
FN_DECIMAL(-0.3058706624),
|
|
FN_DECIMAL(0.5533414464),
|
|
FN_DECIMAL(-0.8838306897),
|
|
FN_DECIMAL(0.04496841812),
|
|
FN_DECIMAL(0.01687374963),
|
|
FN_DECIMAL(-0.9927133148),
|
|
FN_DECIMAL(-0.211752318),
|
|
FN_DECIMAL(0.3732015249),
|
|
FN_DECIMAL(0.9632990593),
|
|
FN_DECIMAL(-0.07682417004),
|
|
FN_DECIMAL(-0.07232213047),
|
|
FN_DECIMAL(0.4733721775),
|
|
FN_DECIMAL(0.2579229713),
|
|
FN_DECIMAL(0.7995216286),
|
|
FN_DECIMAL(0.3928189967),
|
|
FN_DECIMAL(0.04107517667),
|
|
FN_DECIMAL(0.1534542912),
|
|
FN_DECIMAL(0.6468965045),
|
|
FN_DECIMAL(0.4030684878),
|
|
FN_DECIMAL(-0.5617300988),
|
|
FN_DECIMAL(-0.885463029),
|
|
FN_DECIMAL(0.693729985),
|
|
FN_DECIMAL(-0.5736527866),
|
|
FN_DECIMAL(-0.9911905409),
|
|
FN_DECIMAL(-0.66451538),
|
|
FN_DECIMAL(0.2028855685),
|
|
FN_DECIMAL(0.8019541421),
|
|
FN_DECIMAL(-0.3903877149),
|
|
FN_DECIMAL(-0.4888495114),
|
|
FN_DECIMAL(-0.2753714057),
|
|
FN_DECIMAL(-0.8915202143),
|
|
FN_DECIMAL(0.5273119089),
|
|
FN_DECIMAL(0.9363714773),
|
|
FN_DECIMAL(-0.5212228249),
|
|
FN_DECIMAL(-0.31642672),
|
|
FN_DECIMAL(0.2409440761),
|
|
FN_DECIMAL(-0.703776404),
|
|
FN_DECIMAL(-0.6996810411),
|
|
FN_DECIMAL(-0.7058714505),
|
|
FN_DECIMAL(-0.3650566783),
|
|
FN_DECIMAL(0.1064744278),
|
|
FN_DECIMAL(0.7985729102),
|
|
FN_DECIMAL(0.424680257),
|
|
FN_DECIMAL(-0.6384535592),
|
|
FN_DECIMAL(0.1540161646),
|
|
FN_DECIMAL(-0.07702731943),
|
|
FN_DECIMAL(-0.5627789132),
|
|
FN_DECIMAL(-0.7667919169),
|
|
FN_DECIMAL(-0.509815999),
|
|
FN_DECIMAL(0.4590525092),
|
|
FN_DECIMAL(0.1552595611),
|
|
FN_DECIMAL(0.345402042),
|
|
FN_DECIMAL(0.7537656024),
|
|
FN_DECIMAL(0.7906259247),
|
|
FN_DECIMAL(-0.6218493452),
|
|
FN_DECIMAL(0.02979350071),
|
|
FN_DECIMAL(-0.1337893489),
|
|
FN_DECIMAL(-0.1483818606),
|
|
FN_DECIMAL(0.549965562),
|
|
FN_DECIMAL(0.01882482408),
|
|
FN_DECIMAL(-0.7833783002),
|
|
FN_DECIMAL(0.4702855809),
|
|
FN_DECIMAL(0.2435827372),
|
|
FN_DECIMAL(0.2978428332),
|
|
FN_DECIMAL(0.2256499906),
|
|
FN_DECIMAL(0.4885036897),
|
|
FN_DECIMAL(0.5312962584),
|
|
FN_DECIMAL(0.05401156992),
|
|
FN_DECIMAL(0.1749922158),
|
|
FN_DECIMAL(-0.7352273018),
|
|
FN_DECIMAL(0.6058980284),
|
|
FN_DECIMAL(0.4416079111),
|
|
FN_DECIMAL(0.4417378638),
|
|
FN_DECIMAL(0.5455879807),
|
|
FN_DECIMAL(-0.6681295324),
|
|
FN_DECIMAL(0.1973431441),
|
|
FN_DECIMAL(0.4053292055),
|
|
FN_DECIMAL(0.2220375492),
|
|
FN_DECIMAL(0.2957118467),
|
|
FN_DECIMAL(0.6910913512),
|
|
FN_DECIMAL(0.5940890106),
|
|
FN_DECIMAL(-0.2014135283),
|
|
FN_DECIMAL(-0.9172588213),
|
|
FN_DECIMAL(-0.4254361401),
|
|
FN_DECIMAL(-0.6146586825),
|
|
FN_DECIMAL(-0.7996193253),
|
|
FN_DECIMAL(-0.3716777111),
|
|
FN_DECIMAL(-0.9448876842),
|
|
FN_DECIMAL(-0.2620349924),
|
|
FN_DECIMAL(0.9615995749),
|
|
FN_DECIMAL(-0.4679683524),
|
|
FN_DECIMAL(0.3905937144),
|
|
FN_DECIMAL(0.613593722),
|
|
FN_DECIMAL(0.1422937358),
|
|
FN_DECIMAL(0.1908754211),
|
|
FN_DECIMAL(0.8189704912),
|
|
FN_DECIMAL(-0.7300408736),
|
|
FN_DECIMAL(-0.4108776451),
|
|
FN_DECIMAL(-0.5319834504),
|
|
FN_DECIMAL(-0.8970265651),
|
|
FN_DECIMAL(-0.5386359045),
|
|
FN_DECIMAL(0.4082255906),
|
|
FN_DECIMAL(0.7245356676),
|
|
FN_DECIMAL(0.5239080873),
|
|
FN_DECIMAL(-0.8937552226),
|
|
FN_DECIMAL(-0.553637673),
|
|
FN_DECIMAL(0.2354455182),
|
|
FN_DECIMAL(-0.0860293075),
|
|
FN_DECIMAL(-0.1399373318),
|
|
FN_DECIMAL(-0.4666323327),
|
|
FN_DECIMAL(0.5560157407),
|
|
FN_DECIMAL(0.1772619533),
|
|
FN_DECIMAL(-0.8893937725),
|
|
FN_DECIMAL(-0.5632714576),
|
|
FN_DECIMAL(-0.5666264959),
|
|
FN_DECIMAL(-0.3670263736),
|
|
FN_DECIMAL(-0.06717242579),
|
|
FN_DECIMAL(0.6205295181),
|
|
FN_DECIMAL(-0.4110536264),
|
|
FN_DECIMAL(0.7090054553),
|
|
FN_DECIMAL(0.183899597),
|
|
FN_DECIMAL(-0.5605470555),
|
|
FN_DECIMAL(0.3879565548),
|
|
FN_DECIMAL(0.7420893903),
|
|
FN_DECIMAL(-0.2347595118),
|
|
FN_DECIMAL(-0.8577217497),
|
|
FN_DECIMAL(0.6325590203),
|
|
FN_DECIMAL(-0.8736152276),
|
|
FN_DECIMAL(0.7048011129),
|
|
FN_DECIMAL(-0.06317948268),
|
|
FN_DECIMAL(0.8753285574),
|
|
FN_DECIMAL(-0.05843650473),
|
|
FN_DECIMAL(-0.3674922622),
|
|
FN_DECIMAL(-0.5256624401),
|
|
FN_DECIMAL(0.7861039337),
|
|
FN_DECIMAL(0.3287714416),
|
|
FN_DECIMAL(0.5910593099),
|
|
FN_DECIMAL(-0.3896960134),
|
|
FN_DECIMAL(0.6864605361),
|
|
FN_DECIMAL(0.7164918431),
|
|
FN_DECIMAL(-0.290014277),
|
|
FN_DECIMAL(-0.6796169617),
|
|
FN_DECIMAL(0.1632515592),
|
|
FN_DECIMAL(0.04485347486),
|
|
FN_DECIMAL(0.8320545697),
|
|
FN_DECIMAL(0.01339408056),
|
|
FN_DECIMAL(-0.2874989857),
|
|
FN_DECIMAL(0.615630723),
|
|
FN_DECIMAL(0.3430367014),
|
|
FN_DECIMAL(0.8193658136),
|
|
FN_DECIMAL(-0.5829600957),
|
|
FN_DECIMAL(0.07911697781),
|
|
FN_DECIMAL(0.7854296063),
|
|
FN_DECIMAL(-0.4107442306),
|
|
FN_DECIMAL(0.4766964066),
|
|
FN_DECIMAL(-0.9045999527),
|
|
FN_DECIMAL(-0.1673856787),
|
|
FN_DECIMAL(0.2828077348),
|
|
FN_DECIMAL(-0.5902737632),
|
|
FN_DECIMAL(-0.321506229),
|
|
FN_DECIMAL(-0.5224513133),
|
|
FN_DECIMAL(-0.4090169985),
|
|
FN_DECIMAL(-0.3599685311),
|
|
};
|
|
|
|
static int FastFloor(FN_DECIMAL f) {
|
|
return (f >= 0 ? (int)f : (int)f - 1);
|
|
}
|
|
static int FastRound(FN_DECIMAL f) {
|
|
return (f >= 0) ? (int)(f + FN_DECIMAL(0.5)) : (int)(f - FN_DECIMAL(0.5));
|
|
}
|
|
//static int FastAbs(int i) { return abs(i); }
|
|
static FN_DECIMAL FastAbs(FN_DECIMAL f) {
|
|
return fabs(f);
|
|
}
|
|
static FN_DECIMAL Lerp(FN_DECIMAL a, FN_DECIMAL b, FN_DECIMAL t) {
|
|
return a + t * (b - a);
|
|
}
|
|
static FN_DECIMAL InterpHermiteFunc(FN_DECIMAL t) {
|
|
return t * t * (3 - 2 * t);
|
|
}
|
|
static FN_DECIMAL InterpQuinticFunc(FN_DECIMAL t) {
|
|
return t * t * t * (t * (t * 6 - 15) + 10);
|
|
}
|
|
static FN_DECIMAL CubicLerp(FN_DECIMAL a, FN_DECIMAL b, FN_DECIMAL c, FN_DECIMAL d, FN_DECIMAL t) {
|
|
FN_DECIMAL p = (d - c) - (a - b);
|
|
return t * t * t * p + t * t * ((a - b) - p) + t * (c - a) + b;
|
|
}
|
|
|
|
void FastNoise::SetSeed(int seed) {
|
|
m_seed = seed;
|
|
|
|
std::mt19937_64 gen(seed);
|
|
|
|
for (int i = 0; i < 256; i++)
|
|
m_perm[i] = i;
|
|
|
|
for (int j = 0; j < 256; j++) {
|
|
int rng = (int)(gen() % (256 - j));
|
|
int k = rng + j;
|
|
int l = m_perm[j];
|
|
m_perm[j] = m_perm[j + 256] = m_perm[k];
|
|
m_perm[k] = l;
|
|
m_perm12[j] = m_perm12[j + 256] = m_perm[j] % 12;
|
|
}
|
|
}
|
|
|
|
void FastNoise::CalculateFractalBounding() {
|
|
FN_DECIMAL amp = m_gain;
|
|
FN_DECIMAL ampFractal = 1.0f;
|
|
for (int i = 1; i < m_octaves; i++) {
|
|
ampFractal += amp;
|
|
amp *= m_gain;
|
|
}
|
|
m_fractalBounding = 1.0f / ampFractal;
|
|
}
|
|
|
|
void FastNoise::SetCellularDistance2Indices(int cellularDistanceIndex0, int cellularDistanceIndex1) {
|
|
m_cellularDistanceIndex0 = std::min(cellularDistanceIndex0, cellularDistanceIndex1);
|
|
m_cellularDistanceIndex1 = std::max(cellularDistanceIndex0, cellularDistanceIndex1);
|
|
|
|
m_cellularDistanceIndex0 = std::min(std::max(m_cellularDistanceIndex0, 0), FN_CELLULAR_INDEX_MAX);
|
|
m_cellularDistanceIndex1 = std::min(std::max(m_cellularDistanceIndex1, 0), FN_CELLULAR_INDEX_MAX);
|
|
}
|
|
|
|
void FastNoise::GetCellularDistance2Indices(int &cellularDistanceIndex0, int &cellularDistanceIndex1) const {
|
|
cellularDistanceIndex0 = m_cellularDistanceIndex0;
|
|
cellularDistanceIndex1 = m_cellularDistanceIndex1;
|
|
}
|
|
|
|
unsigned char FastNoise::Index2D_12(unsigned char offset, int x, int y) const {
|
|
return m_perm12[(x & 0xff) + m_perm[(y & 0xff) + offset]];
|
|
}
|
|
unsigned char FastNoise::Index3D_12(unsigned char offset, int x, int y, int z) const {
|
|
return m_perm12[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + offset]]];
|
|
}
|
|
unsigned char FastNoise::Index4D_32(unsigned char offset, int x, int y, int z, int w) const {
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + m_perm[(w & 0xff) + offset]]]] & 31;
|
|
}
|
|
unsigned char FastNoise::Index2D_256(unsigned char offset, int x, int y) const {
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + offset]];
|
|
}
|
|
unsigned char FastNoise::Index3D_256(unsigned char offset, int x, int y, int z) const {
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + offset]]];
|
|
}
|
|
unsigned char FastNoise::Index4D_256(unsigned char offset, int x, int y, int z, int w) const {
|
|
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + m_perm[(w & 0xff) + offset]]]];
|
|
}
|
|
|
|
// Hashing
|
|
#define X_PRIME 1619
|
|
#define Y_PRIME 31337
|
|
#define Z_PRIME 6971
|
|
#define W_PRIME 1013
|
|
|
|
static FN_DECIMAL ValCoord2D(int seed, int x, int y) {
|
|
int n = seed;
|
|
n ^= X_PRIME * x;
|
|
n ^= Y_PRIME * y;
|
|
|
|
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
|
|
}
|
|
static FN_DECIMAL ValCoord3D(int seed, int x, int y, int z) {
|
|
int n = seed;
|
|
n ^= X_PRIME * x;
|
|
n ^= Y_PRIME * y;
|
|
n ^= Z_PRIME * z;
|
|
|
|
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
|
|
}
|
|
static FN_DECIMAL ValCoord4D(int seed, int x, int y, int z, int w) {
|
|
int n = seed;
|
|
n ^= X_PRIME * x;
|
|
n ^= Y_PRIME * y;
|
|
n ^= Z_PRIME * z;
|
|
n ^= W_PRIME * w;
|
|
|
|
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::ValCoord2DFast(unsigned char offset, int x, int y) const {
|
|
return VAL_LUT[Index2D_256(offset, x, y)];
|
|
}
|
|
FN_DECIMAL FastNoise::ValCoord3DFast(unsigned char offset, int x, int y, int z) const {
|
|
return VAL_LUT[Index3D_256(offset, x, y, z)];
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GradCoord2D(unsigned char offset, int x, int y, FN_DECIMAL xd, FN_DECIMAL yd) const {
|
|
unsigned char lutPos = Index2D_12(offset, x, y);
|
|
|
|
return xd * GRAD_X[lutPos] + yd * GRAD_Y[lutPos];
|
|
}
|
|
FN_DECIMAL FastNoise::GradCoord3D(unsigned char offset, int x, int y, int z, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd) const {
|
|
unsigned char lutPos = Index3D_12(offset, x, y, z);
|
|
|
|
return xd * GRAD_X[lutPos] + yd * GRAD_Y[lutPos] + zd * GRAD_Z[lutPos];
|
|
}
|
|
FN_DECIMAL FastNoise::GradCoord4D(unsigned char offset, int x, int y, int z, int w, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd, FN_DECIMAL wd) const {
|
|
unsigned char lutPos = Index4D_32(offset, x, y, z, w) << 2;
|
|
|
|
return xd * GRAD_4D[lutPos] + yd * GRAD_4D[lutPos + 1] + zd * GRAD_4D[lutPos + 2] + wd * GRAD_4D[lutPos + 3];
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_noiseType) {
|
|
case Value:
|
|
return SingleValue(0, x, y, z);
|
|
case ValueFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
case Perlin:
|
|
return SinglePerlin(0, x, y, z);
|
|
case PerlinFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
case Simplex:
|
|
return SingleSimplex(0, x, y, z);
|
|
case SimplexFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
case Cellular:
|
|
switch (m_cellularReturnType) {
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y, z);
|
|
default:
|
|
return SingleCellular2Edge(x, y, z);
|
|
}
|
|
case WhiteNoise:
|
|
return GetWhiteNoise(x, y, z);
|
|
case Cubic:
|
|
return SingleCubic(0, x, y, z);
|
|
case CubicFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y, z);
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetNoise(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_noiseType) {
|
|
case Value:
|
|
return SingleValue(0, x, y);
|
|
case ValueFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y);
|
|
}
|
|
case Perlin:
|
|
return SinglePerlin(0, x, y);
|
|
case PerlinFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y);
|
|
}
|
|
case Simplex:
|
|
return SingleSimplex(0, x, y);
|
|
case SimplexFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y);
|
|
}
|
|
case Cellular:
|
|
switch (m_cellularReturnType) {
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y);
|
|
default:
|
|
return SingleCellular2Edge(x, y);
|
|
}
|
|
case WhiteNoise:
|
|
return GetWhiteNoise(x, y);
|
|
case Cubic:
|
|
return SingleCubic(0, x, y);
|
|
case CubicFractal:
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// White Noise
|
|
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const {
|
|
int32_t *xx = reinterpret_cast<int32_t *>(&x);
|
|
int32_t *yy = reinterpret_cast<int32_t *>(&y);
|
|
int32_t *zz = reinterpret_cast<int32_t *>(&z);
|
|
int32_t *ww = reinterpret_cast<int32_t *>(&w);
|
|
|
|
return ValCoord4D(m_seed,
|
|
*xx ^ (*xx >> 16),
|
|
*yy ^ (*yy >> 16),
|
|
*zz ^ (*zz >> 16),
|
|
*ww ^ (*ww >> 16));
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
int32_t *xx = reinterpret_cast<int32_t *>(&x);
|
|
int32_t *yy = reinterpret_cast<int32_t *>(&y);
|
|
int32_t *zz = reinterpret_cast<int32_t *>(&z);
|
|
|
|
return ValCoord3D(m_seed,
|
|
*xx ^ (*xx >> 16),
|
|
*yy ^ (*yy >> 16),
|
|
*zz ^ (*zz >> 16));
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
int32_t *xx = reinterpret_cast<int32_t *>(&x);
|
|
int32_t *yy = reinterpret_cast<int32_t *>(&y);
|
|
|
|
return ValCoord2D(m_seed,
|
|
*xx ^ (*xx >> 16),
|
|
*yy ^ (*yy >> 16));
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y, int z, int w) const {
|
|
return ValCoord4D(m_seed, x, y, z, w);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y, int z) const {
|
|
return ValCoord3D(m_seed, x, y, z);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y) const {
|
|
return ValCoord2D(m_seed, x, y);
|
|
}
|
|
|
|
// Value Noise
|
|
FN_DECIMAL FastNoise::GetValueFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = SingleValue(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleValue(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = FastAbs(SingleValue(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleValue(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleValue(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleValue(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetValue(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
return SingleValue(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int z0 = FastFloor(z);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
int z1 = z0 + 1;
|
|
|
|
FN_DECIMAL xs, ys, zs;
|
|
switch (m_interp) {
|
|
default:
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
zs = z - (FN_DECIMAL)z0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpHermiteFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpQuinticFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xf00 = Lerp(ValCoord3DFast(offset, x0, y0, z0), ValCoord3DFast(offset, x1, y0, z0), xs);
|
|
FN_DECIMAL xf10 = Lerp(ValCoord3DFast(offset, x0, y1, z0), ValCoord3DFast(offset, x1, y1, z0), xs);
|
|
FN_DECIMAL xf01 = Lerp(ValCoord3DFast(offset, x0, y0, z1), ValCoord3DFast(offset, x1, y0, z1), xs);
|
|
FN_DECIMAL xf11 = Lerp(ValCoord3DFast(offset, x0, y1, z1), ValCoord3DFast(offset, x1, y1, z1), xs);
|
|
|
|
FN_DECIMAL yf0 = Lerp(xf00, xf10, ys);
|
|
FN_DECIMAL yf1 = Lerp(xf01, xf11, ys);
|
|
|
|
return Lerp(yf0, yf1, zs);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetValueFractal(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleValueFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleValueFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleValueFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = SingleValue(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleValue(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = FastAbs(SingleValue(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleValue(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleValue(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleValue(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetValue(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
return SingleValue(0, x * m_frequency, y * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
|
|
FN_DECIMAL xs, ys;
|
|
switch (m_interp) {
|
|
default:
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xf0 = Lerp(ValCoord2DFast(offset, x0, y0), ValCoord2DFast(offset, x1, y0), xs);
|
|
FN_DECIMAL xf1 = Lerp(ValCoord2DFast(offset, x0, y1), ValCoord2DFast(offset, x1, y1), xs);
|
|
|
|
return Lerp(xf0, xf1, ys);
|
|
}
|
|
|
|
// Perlin Noise
|
|
FN_DECIMAL FastNoise::GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = SinglePerlin(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SinglePerlin(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = FastAbs(SinglePerlin(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SinglePerlin(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SinglePerlin(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SinglePerlin(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetPerlin(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
return SinglePerlin(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int z0 = FastFloor(z);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
int z1 = z0 + 1;
|
|
|
|
FN_DECIMAL xs, ys, zs;
|
|
switch (m_interp) {
|
|
default:
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
zs = z - (FN_DECIMAL)z0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpHermiteFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
zs = InterpQuinticFunc(z - (FN_DECIMAL)z0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xd0 = x - (FN_DECIMAL)x0;
|
|
FN_DECIMAL yd0 = y - (FN_DECIMAL)y0;
|
|
FN_DECIMAL zd0 = z - (FN_DECIMAL)z0;
|
|
FN_DECIMAL xd1 = xd0 - 1;
|
|
FN_DECIMAL yd1 = yd0 - 1;
|
|
FN_DECIMAL zd1 = zd0 - 1;
|
|
|
|
FN_DECIMAL xf00 = Lerp(GradCoord3D(offset, x0, y0, z0, xd0, yd0, zd0), GradCoord3D(offset, x1, y0, z0, xd1, yd0, zd0), xs);
|
|
FN_DECIMAL xf10 = Lerp(GradCoord3D(offset, x0, y1, z0, xd0, yd1, zd0), GradCoord3D(offset, x1, y1, z0, xd1, yd1, zd0), xs);
|
|
FN_DECIMAL xf01 = Lerp(GradCoord3D(offset, x0, y0, z1, xd0, yd0, zd1), GradCoord3D(offset, x1, y0, z1, xd1, yd0, zd1), xs);
|
|
FN_DECIMAL xf11 = Lerp(GradCoord3D(offset, x0, y1, z1, xd0, yd1, zd1), GradCoord3D(offset, x1, y1, z1, xd1, yd1, zd1), xs);
|
|
|
|
FN_DECIMAL yf0 = Lerp(xf00, xf10, ys);
|
|
FN_DECIMAL yf1 = Lerp(xf01, xf11, ys);
|
|
|
|
return Lerp(yf0, yf1, zs);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SinglePerlinFractalFBM(x, y);
|
|
case Billow:
|
|
return SinglePerlinFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SinglePerlinFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = SinglePerlin(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SinglePerlin(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = FastAbs(SinglePerlin(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SinglePerlin(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SinglePerlin(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SinglePerlin(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetPerlin(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
return SinglePerlin(0, x * m_frequency, y * m_frequency);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
|
|
int x0 = FastFloor(x);
|
|
int y0 = FastFloor(y);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
|
|
FN_DECIMAL xs, ys;
|
|
switch (m_interp) {
|
|
default:
|
|
case Linear:
|
|
xs = x - (FN_DECIMAL)x0;
|
|
ys = y - (FN_DECIMAL)y0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
|
|
break;
|
|
}
|
|
|
|
FN_DECIMAL xd0 = x - (FN_DECIMAL)x0;
|
|
FN_DECIMAL yd0 = y - (FN_DECIMAL)y0;
|
|
FN_DECIMAL xd1 = xd0 - 1;
|
|
FN_DECIMAL yd1 = yd0 - 1;
|
|
|
|
FN_DECIMAL xf0 = Lerp(GradCoord2D(offset, x0, y0, xd0, yd0), GradCoord2D(offset, x1, y0, xd1, yd0), xs);
|
|
FN_DECIMAL xf1 = Lerp(GradCoord2D(offset, x0, y1, xd0, yd1), GradCoord2D(offset, x1, y1, xd1, yd1), xs);
|
|
|
|
return Lerp(xf0, xf1, ys);
|
|
}
|
|
|
|
// Simplex Noise
|
|
|
|
FN_DECIMAL FastNoise::GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleSimplex(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = FastAbs(SingleSimplex(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleSimplex(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleSimplex(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleSimplex(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
return SingleSimplex(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
static const FN_DECIMAL F3 = 1 / FN_DECIMAL(3);
|
|
static const FN_DECIMAL G3 = 1 / FN_DECIMAL(6);
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL t = (x + y + z) * F3;
|
|
int i = FastFloor(x + t);
|
|
int j = FastFloor(y + t);
|
|
int k = FastFloor(z + t);
|
|
|
|
t = (i + j + k) * G3;
|
|
FN_DECIMAL X0 = i - t;
|
|
FN_DECIMAL Y0 = j - t;
|
|
FN_DECIMAL Z0 = k - t;
|
|
|
|
FN_DECIMAL x0 = x - X0;
|
|
FN_DECIMAL y0 = y - Y0;
|
|
FN_DECIMAL z0 = z - Z0;
|
|
|
|
int i1, j1, k1;
|
|
int i2, j2, k2;
|
|
|
|
if (x0 >= y0) {
|
|
if (y0 >= z0) {
|
|
i1 = 1;
|
|
j1 = 0;
|
|
k1 = 0;
|
|
i2 = 1;
|
|
j2 = 1;
|
|
k2 = 0;
|
|
} else if (x0 >= z0) {
|
|
i1 = 1;
|
|
j1 = 0;
|
|
k1 = 0;
|
|
i2 = 1;
|
|
j2 = 0;
|
|
k2 = 1;
|
|
} else // x0 < z0
|
|
{
|
|
i1 = 0;
|
|
j1 = 0;
|
|
k1 = 1;
|
|
i2 = 1;
|
|
j2 = 0;
|
|
k2 = 1;
|
|
}
|
|
} else // x0 < y0
|
|
{
|
|
if (y0 < z0) {
|
|
i1 = 0;
|
|
j1 = 0;
|
|
k1 = 1;
|
|
i2 = 0;
|
|
j2 = 1;
|
|
k2 = 1;
|
|
} else if (x0 < z0) {
|
|
i1 = 0;
|
|
j1 = 1;
|
|
k1 = 0;
|
|
i2 = 0;
|
|
j2 = 1;
|
|
k2 = 1;
|
|
} else // x0 >= z0
|
|
{
|
|
i1 = 0;
|
|
j1 = 1;
|
|
k1 = 0;
|
|
i2 = 1;
|
|
j2 = 1;
|
|
k2 = 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL x1 = x0 - i1 + G3;
|
|
FN_DECIMAL y1 = y0 - j1 + G3;
|
|
FN_DECIMAL z1 = z0 - k1 + G3;
|
|
FN_DECIMAL x2 = x0 - i2 + 2 * G3;
|
|
FN_DECIMAL y2 = y0 - j2 + 2 * G3;
|
|
FN_DECIMAL z2 = z0 - k2 + 2 * G3;
|
|
FN_DECIMAL x3 = x0 - 1 + 3 * G3;
|
|
FN_DECIMAL y3 = y0 - 1 + 3 * G3;
|
|
FN_DECIMAL z3 = z0 - 1 + 3 * G3;
|
|
|
|
FN_DECIMAL n0, n1, n2, n3;
|
|
|
|
t = FN_DECIMAL(0.6) - x0 * x0 - y0 * y0 - z0 * z0;
|
|
if (t < 0)
|
|
n0 = 0;
|
|
else {
|
|
t *= t;
|
|
n0 = t * t * GradCoord3D(offset, i, j, k, x0, y0, z0);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.6) - x1 * x1 - y1 * y1 - z1 * z1;
|
|
if (t < 0)
|
|
n1 = 0;
|
|
else {
|
|
t *= t;
|
|
n1 = t * t * GradCoord3D(offset, i + i1, j + j1, k + k1, x1, y1, z1);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.6) - x2 * x2 - y2 * y2 - z2 * z2;
|
|
if (t < 0)
|
|
n2 = 0;
|
|
else {
|
|
t *= t;
|
|
n2 = t * t * GradCoord3D(offset, i + i2, j + j2, k + k2, x2, y2, z2);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.6) - x3 * x3 - y3 * y3 - z3 * z3;
|
|
if (t < 0)
|
|
n3 = 0;
|
|
else {
|
|
t *= t;
|
|
n3 = t * t * GradCoord3D(offset, i + 1, j + 1, k + 1, x3, y3, z3);
|
|
}
|
|
|
|
return 32 * (n0 + n1 + n2 + n3);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleSimplexFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleSimplexFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleSimplexFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleSimplex(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = FastAbs(SingleSimplex(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleSimplex(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleSimplex(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleSimplex(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplexFractalBlend(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum *= SingleSimplex(m_perm[i], x, y) * amp + 1;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
return SingleSimplex(0, x * m_frequency, y * m_frequency);
|
|
}
|
|
|
|
//static const FN_DECIMAL F2 = 1 / FN_DECIMAL(2);
|
|
//static const FN_DECIMAL G2 = 1 / FN_DECIMAL(4);
|
|
|
|
static const FN_DECIMAL SQRT3 = FN_DECIMAL(1.7320508075688772935274463415059);
|
|
static const FN_DECIMAL F2 = FN_DECIMAL(0.5) * (SQRT3 - FN_DECIMAL(1.0));
|
|
static const FN_DECIMAL G2 = (FN_DECIMAL(3.0) - SQRT3) / FN_DECIMAL(6.0);
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL t = (x + y) * F2;
|
|
int i = FastFloor(x + t);
|
|
int j = FastFloor(y + t);
|
|
|
|
t = (i + j) * G2;
|
|
FN_DECIMAL X0 = i - t;
|
|
FN_DECIMAL Y0 = j - t;
|
|
|
|
FN_DECIMAL x0 = x - X0;
|
|
FN_DECIMAL y0 = y - Y0;
|
|
|
|
int i1, j1;
|
|
if (x0 > y0) {
|
|
i1 = 1;
|
|
j1 = 0;
|
|
} else {
|
|
i1 = 0;
|
|
j1 = 1;
|
|
}
|
|
|
|
FN_DECIMAL x1 = x0 - (FN_DECIMAL)i1 + G2;
|
|
FN_DECIMAL y1 = y0 - (FN_DECIMAL)j1 + G2;
|
|
FN_DECIMAL x2 = x0 - 1 + 2 * G2;
|
|
FN_DECIMAL y2 = y0 - 1 + 2 * G2;
|
|
|
|
FN_DECIMAL n0, n1, n2;
|
|
|
|
t = FN_DECIMAL(0.5) - x0 * x0 - y0 * y0;
|
|
if (t < 0)
|
|
n0 = 0;
|
|
else {
|
|
t *= t;
|
|
n0 = t * t * GradCoord2D(offset, i, j, x0, y0);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.5) - x1 * x1 - y1 * y1;
|
|
if (t < 0)
|
|
n1 = 0;
|
|
else {
|
|
t *= t;
|
|
n1 = t * t * GradCoord2D(offset, i + i1, j + j1, x1, y1);
|
|
}
|
|
|
|
t = FN_DECIMAL(0.5) - x2 * x2 - y2 * y2;
|
|
if (t < 0)
|
|
n2 = 0;
|
|
else {
|
|
t *= t;
|
|
n2 = t * t * GradCoord2D(offset, i + 1, j + 1, x2, y2);
|
|
}
|
|
|
|
return 70 * (n0 + n1 + n2);
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const {
|
|
return SingleSimplex(0, x * m_frequency, y * m_frequency, z * m_frequency, w * m_frequency);
|
|
}
|
|
|
|
static const unsigned char SIMPLEX_4D[] = {
|
|
0, 1, 2, 3, 0, 1, 3, 2, 0, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0,
|
|
0, 2, 1, 3, 0, 0, 0, 0, 0, 3, 1, 2, 0, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
1, 2, 0, 3, 0, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 1, 2, 3, 1, 0,
|
|
1, 0, 2, 3, 1, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 1, 0, 0, 0, 0, 2, 1, 3, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
2, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 2, 3, 0, 2, 1, 0, 0, 0, 0, 3, 1, 2, 0,
|
|
2, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 0, 0, 3, 2, 0, 1, 3, 2, 1, 0
|
|
};
|
|
|
|
static const FN_DECIMAL F4 = (sqrt(FN_DECIMAL(5)) - 1) / 4;
|
|
static const FN_DECIMAL G4 = (5 - sqrt(FN_DECIMAL(5))) / 20;
|
|
|
|
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const {
|
|
FN_DECIMAL n0, n1, n2, n3, n4;
|
|
FN_DECIMAL t = (x + y + z + w) * F4;
|
|
int i = FastFloor(x + t);
|
|
int j = FastFloor(y + t);
|
|
int k = FastFloor(z + t);
|
|
int l = FastFloor(w + t);
|
|
t = (i + j + k + l) * G4;
|
|
FN_DECIMAL X0 = i - t;
|
|
FN_DECIMAL Y0 = j - t;
|
|
FN_DECIMAL Z0 = k - t;
|
|
FN_DECIMAL W0 = l - t;
|
|
FN_DECIMAL x0 = x - X0;
|
|
FN_DECIMAL y0 = y - Y0;
|
|
FN_DECIMAL z0 = z - Z0;
|
|
FN_DECIMAL w0 = w - W0;
|
|
|
|
int c = (x0 > y0) ? 32 : 0;
|
|
c += (x0 > z0) ? 16 : 0;
|
|
c += (y0 > z0) ? 8 : 0;
|
|
c += (x0 > w0) ? 4 : 0;
|
|
c += (y0 > w0) ? 2 : 0;
|
|
c += (z0 > w0) ? 1 : 0;
|
|
c <<= 2;
|
|
|
|
int i1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int i2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int i3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
|
|
int j1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int j2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int j3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
|
|
int k1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int k2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int k3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
|
|
int l1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
|
|
int l2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
|
|
int l3 = SIMPLEX_4D[c] >= 1 ? 1 : 0;
|
|
|
|
FN_DECIMAL x1 = x0 - i1 + G4;
|
|
FN_DECIMAL y1 = y0 - j1 + G4;
|
|
FN_DECIMAL z1 = z0 - k1 + G4;
|
|
FN_DECIMAL w1 = w0 - l1 + G4;
|
|
FN_DECIMAL x2 = x0 - i2 + 2 * G4;
|
|
FN_DECIMAL y2 = y0 - j2 + 2 * G4;
|
|
FN_DECIMAL z2 = z0 - k2 + 2 * G4;
|
|
FN_DECIMAL w2 = w0 - l2 + 2 * G4;
|
|
FN_DECIMAL x3 = x0 - i3 + 3 * G4;
|
|
FN_DECIMAL y3 = y0 - j3 + 3 * G4;
|
|
FN_DECIMAL z3 = z0 - k3 + 3 * G4;
|
|
FN_DECIMAL w3 = w0 - l3 + 3 * G4;
|
|
FN_DECIMAL x4 = x0 - 1 + 4 * G4;
|
|
FN_DECIMAL y4 = y0 - 1 + 4 * G4;
|
|
FN_DECIMAL z4 = z0 - 1 + 4 * G4;
|
|
FN_DECIMAL w4 = w0 - 1 + 4 * G4;
|
|
|
|
t = FN_DECIMAL(0.6) - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
|
|
if (t < 0)
|
|
n0 = 0;
|
|
else {
|
|
t *= t;
|
|
n0 = t * t * GradCoord4D(offset, i, j, k, l, x0, y0, z0, w0);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
|
|
if (t < 0)
|
|
n1 = 0;
|
|
else {
|
|
t *= t;
|
|
n1 = t * t * GradCoord4D(offset, i + i1, j + j1, k + k1, l + l1, x1, y1, z1, w1);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
|
|
if (t < 0)
|
|
n2 = 0;
|
|
else {
|
|
t *= t;
|
|
n2 = t * t * GradCoord4D(offset, i + i2, j + j2, k + k2, l + l2, x2, y2, z2, w2);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
|
|
if (t < 0)
|
|
n3 = 0;
|
|
else {
|
|
t *= t;
|
|
n3 = t * t * GradCoord4D(offset, i + i3, j + j3, k + k3, l + l3, x3, y3, z3, w3);
|
|
}
|
|
t = FN_DECIMAL(0.6) - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
|
|
if (t < 0)
|
|
n4 = 0;
|
|
else {
|
|
t *= t;
|
|
n4 = t * t * GradCoord4D(offset, i + 1, j + 1, k + 1, l + 1, x4, y4, z4, w4);
|
|
}
|
|
|
|
return 27 * (n0 + n1 + n2 + n3 + n4);
|
|
}
|
|
|
|
// Cubic Noise
|
|
FN_DECIMAL FastNoise::GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y, z);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y, z);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y, z);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = SingleCubic(m_perm[0], x, y, z);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleCubic(m_perm[i], x, y, z) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = FastAbs(SingleCubic(m_perm[0], x, y, z)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleCubic(m_perm[i], x, y, z)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleCubic(m_perm[0], x, y, z));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
z *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleCubic(m_perm[i], x, y, z))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCubic(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
return SingleCubic(0, x * m_frequency, y * m_frequency, z * m_frequency);
|
|
}
|
|
|
|
const FN_DECIMAL CUBIC_3D_BOUNDING = 1 / (FN_DECIMAL(1.5) * FN_DECIMAL(1.5) * FN_DECIMAL(1.5));
|
|
|
|
FN_DECIMAL FastNoise::SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
int x1 = FastFloor(x);
|
|
int y1 = FastFloor(y);
|
|
int z1 = FastFloor(z);
|
|
|
|
int x0 = x1 - 1;
|
|
int y0 = y1 - 1;
|
|
int z0 = z1 - 1;
|
|
int x2 = x1 + 1;
|
|
int y2 = y1 + 1;
|
|
int z2 = z1 + 1;
|
|
int x3 = x1 + 2;
|
|
int y3 = y1 + 2;
|
|
int z3 = z1 + 2;
|
|
|
|
FN_DECIMAL xs = x - (FN_DECIMAL)x1;
|
|
FN_DECIMAL ys = y - (FN_DECIMAL)y1;
|
|
FN_DECIMAL zs = z - (FN_DECIMAL)z1;
|
|
|
|
return CubicLerp(
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z0), ValCoord3DFast(offset, x1, y0, z0), ValCoord3DFast(offset, x2, y0, z0), ValCoord3DFast(offset, x3, y0, z0), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z0), ValCoord3DFast(offset, x1, y1, z0), ValCoord3DFast(offset, x2, y1, z0), ValCoord3DFast(offset, x3, y1, z0), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z0), ValCoord3DFast(offset, x1, y2, z0), ValCoord3DFast(offset, x2, y2, z0), ValCoord3DFast(offset, x3, y2, z0), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z0), ValCoord3DFast(offset, x1, y3, z0), ValCoord3DFast(offset, x2, y3, z0), ValCoord3DFast(offset, x3, y3, z0), xs),
|
|
ys),
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z1), ValCoord3DFast(offset, x1, y0, z1), ValCoord3DFast(offset, x2, y0, z1), ValCoord3DFast(offset, x3, y0, z1), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z1), ValCoord3DFast(offset, x1, y1, z1), ValCoord3DFast(offset, x2, y1, z1), ValCoord3DFast(offset, x3, y1, z1), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z1), ValCoord3DFast(offset, x1, y2, z1), ValCoord3DFast(offset, x2, y2, z1), ValCoord3DFast(offset, x3, y2, z1), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z1), ValCoord3DFast(offset, x1, y3, z1), ValCoord3DFast(offset, x2, y3, z1), ValCoord3DFast(offset, x3, y3, z1), xs),
|
|
ys),
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z2), ValCoord3DFast(offset, x1, y0, z2), ValCoord3DFast(offset, x2, y0, z2), ValCoord3DFast(offset, x3, y0, z2), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z2), ValCoord3DFast(offset, x1, y1, z2), ValCoord3DFast(offset, x2, y1, z2), ValCoord3DFast(offset, x3, y1, z2), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z2), ValCoord3DFast(offset, x1, y2, z2), ValCoord3DFast(offset, x2, y2, z2), ValCoord3DFast(offset, x3, y2, z2), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z2), ValCoord3DFast(offset, x1, y3, z2), ValCoord3DFast(offset, x2, y3, z2), ValCoord3DFast(offset, x3, y3, z2), xs),
|
|
ys),
|
|
CubicLerp(
|
|
CubicLerp(ValCoord3DFast(offset, x0, y0, z3), ValCoord3DFast(offset, x1, y0, z3), ValCoord3DFast(offset, x2, y0, z3), ValCoord3DFast(offset, x3, y0, z3), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y1, z3), ValCoord3DFast(offset, x1, y1, z3), ValCoord3DFast(offset, x2, y1, z3), ValCoord3DFast(offset, x3, y1, z3), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y2, z3), ValCoord3DFast(offset, x1, y2, z3), ValCoord3DFast(offset, x2, y2, z3), ValCoord3DFast(offset, x3, y2, z3), xs),
|
|
CubicLerp(ValCoord3DFast(offset, x0, y3, z3), ValCoord3DFast(offset, x1, y3, z3), ValCoord3DFast(offset, x2, y3, z3), ValCoord3DFast(offset, x3, y3, z3), xs),
|
|
ys),
|
|
zs) *
|
|
CUBIC_3D_BOUNDING;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_fractalType) {
|
|
case FBM:
|
|
return SingleCubicFractalFBM(x, y);
|
|
case Billow:
|
|
return SingleCubicFractalBillow(x, y);
|
|
case RigidMulti:
|
|
return SingleCubicFractalRigidMulti(x, y);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = SingleCubic(m_perm[0], x, y);
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += SingleCubic(m_perm[i], x, y) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = FastAbs(SingleCubic(m_perm[0], x, y)) * 2 - 1;
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum += (FastAbs(SingleCubic(m_perm[i], x, y)) * 2 - 1) * amp;
|
|
}
|
|
|
|
return sum * m_fractalBounding;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
FN_DECIMAL sum = 1 - FastAbs(SingleCubic(m_perm[0], x, y));
|
|
FN_DECIMAL amp = 1;
|
|
int i = 0;
|
|
|
|
while (++i < m_octaves) {
|
|
x *= m_lacunarity;
|
|
y *= m_lacunarity;
|
|
|
|
amp *= m_gain;
|
|
sum -= (1 - FastAbs(SingleCubic(m_perm[i], x, y))) * amp;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCubic(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
return SingleCubic(0, x, y);
|
|
}
|
|
|
|
const FN_DECIMAL CUBIC_2D_BOUNDING = 1 / (FN_DECIMAL(1.5) * FN_DECIMAL(1.5));
|
|
|
|
FN_DECIMAL FastNoise::SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
|
|
int x1 = FastFloor(x);
|
|
int y1 = FastFloor(y);
|
|
|
|
int x0 = x1 - 1;
|
|
int y0 = y1 - 1;
|
|
int x2 = x1 + 1;
|
|
int y2 = y1 + 1;
|
|
int x3 = x1 + 2;
|
|
int y3 = y1 + 2;
|
|
|
|
FN_DECIMAL xs = x - (FN_DECIMAL)x1;
|
|
FN_DECIMAL ys = y - (FN_DECIMAL)y1;
|
|
|
|
return CubicLerp(
|
|
CubicLerp(ValCoord2DFast(offset, x0, y0), ValCoord2DFast(offset, x1, y0), ValCoord2DFast(offset, x2, y0), ValCoord2DFast(offset, x3, y0), xs),
|
|
CubicLerp(ValCoord2DFast(offset, x0, y1), ValCoord2DFast(offset, x1, y1), ValCoord2DFast(offset, x2, y1), ValCoord2DFast(offset, x3, y1), xs),
|
|
CubicLerp(ValCoord2DFast(offset, x0, y2), ValCoord2DFast(offset, x1, y2), ValCoord2DFast(offset, x2, y2), ValCoord2DFast(offset, x3, y2), xs),
|
|
CubicLerp(ValCoord2DFast(offset, x0, y3), ValCoord2DFast(offset, x1, y3), ValCoord2DFast(offset, x2, y3), ValCoord2DFast(offset, x3, y3), xs),
|
|
ys) *
|
|
CUBIC_2D_BOUNDING;
|
|
}
|
|
|
|
// Cellular Noise
|
|
FN_DECIMAL FastNoise::GetCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
z *= m_frequency;
|
|
|
|
switch (m_cellularReturnType) {
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y, z);
|
|
default:
|
|
return SingleCellular2Edge(x, y, z);
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
int zr = FastRound(z);
|
|
|
|
FN_DECIMAL distance = 999999;
|
|
int xc = 0;
|
|
int yc = 0;
|
|
int zc = 0;
|
|
|
|
switch (m_cellularDistanceFunction) {
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++) {
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
|
|
|
|
if (newDistance < distance) {
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
zc = zi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++) {
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ);
|
|
|
|
if (newDistance < distance) {
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
zc = zi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++) {
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ);
|
|
|
|
if (newDistance < distance) {
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
zc = zi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
unsigned char lutPos;
|
|
switch (m_cellularReturnType) {
|
|
case CellValue:
|
|
return ValCoord3D(m_seed, xc, yc, zc);
|
|
|
|
case NoiseLookup:
|
|
assert(m_cellularNoiseLookup);
|
|
|
|
lutPos = Index3D_256(0, xc, yc, zc);
|
|
return m_cellularNoiseLookup->GetNoise(xc + CELL_3D_X[lutPos] * m_cellularJitter, yc + CELL_3D_Y[lutPos] * m_cellularJitter, zc + CELL_3D_Z[lutPos] * m_cellularJitter);
|
|
|
|
case Distance:
|
|
return distance;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
int zr = FastRound(z);
|
|
|
|
FN_DECIMAL distance[FN_CELLULAR_INDEX_MAX + 1] = { 999999, 999999, 999999, 999999 };
|
|
|
|
switch (m_cellularDistanceFunction) {
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++) {
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++) {
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
for (int zi = zr - 1; zi <= zr + 1; zi++) {
|
|
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (m_cellularReturnType) {
|
|
case Distance2:
|
|
return distance[m_cellularDistanceIndex1];
|
|
case Distance2Add:
|
|
return distance[m_cellularDistanceIndex1] + distance[m_cellularDistanceIndex0];
|
|
case Distance2Sub:
|
|
return distance[m_cellularDistanceIndex1] - distance[m_cellularDistanceIndex0];
|
|
case Distance2Mul:
|
|
return distance[m_cellularDistanceIndex1] * distance[m_cellularDistanceIndex0];
|
|
case Distance2Div:
|
|
return distance[m_cellularDistanceIndex0] / distance[m_cellularDistanceIndex1];
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::GetCellular(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
x *= m_frequency;
|
|
y *= m_frequency;
|
|
|
|
switch (m_cellularReturnType) {
|
|
case CellValue:
|
|
case NoiseLookup:
|
|
case Distance:
|
|
return SingleCellular(x, y);
|
|
default:
|
|
return SingleCellular2Edge(x, y);
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
|
|
FN_DECIMAL distance = 999999;
|
|
int xc = 0;
|
|
int yc = 0;
|
|
|
|
switch (m_cellularDistanceFunction) {
|
|
default:
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY;
|
|
|
|
if (newDistance < distance) {
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY));
|
|
|
|
if (newDistance < distance) {
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY);
|
|
|
|
if (newDistance < distance) {
|
|
distance = newDistance;
|
|
xc = xi;
|
|
yc = yi;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
unsigned char lutPos;
|
|
switch (m_cellularReturnType) {
|
|
case CellValue:
|
|
return ValCoord2D(m_seed, xc, yc);
|
|
|
|
case NoiseLookup:
|
|
assert(m_cellularNoiseLookup);
|
|
|
|
lutPos = Index2D_256(0, xc, yc);
|
|
return m_cellularNoiseLookup->GetNoise(xc + CELL_2D_X[lutPos] * m_cellularJitter, yc + CELL_2D_Y[lutPos] * m_cellularJitter);
|
|
|
|
case Distance:
|
|
return distance;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
FN_DECIMAL FastNoise::SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y) const {
|
|
int xr = FastRound(x);
|
|
int yr = FastRound(y);
|
|
|
|
FN_DECIMAL distance[FN_CELLULAR_INDEX_MAX + 1] = { 999999, 999999, 999999, 999999 };
|
|
|
|
switch (m_cellularDistanceFunction) {
|
|
default:
|
|
case Euclidean:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY;
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
break;
|
|
case Manhattan:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
break;
|
|
case Natural:
|
|
for (int xi = xr - 1; xi <= xr + 1; xi++) {
|
|
for (int yi = yr - 1; yi <= yr + 1; yi++) {
|
|
unsigned char lutPos = Index2D_256(0, xi, yi);
|
|
|
|
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
|
|
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
|
|
|
|
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY);
|
|
|
|
for (int i = m_cellularDistanceIndex1; i > 0; i--)
|
|
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
|
|
distance[0] = fmin(distance[0], newDistance);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (m_cellularReturnType) {
|
|
case Distance2:
|
|
return distance[m_cellularDistanceIndex1];
|
|
case Distance2Add:
|
|
return distance[m_cellularDistanceIndex1] + distance[m_cellularDistanceIndex0];
|
|
case Distance2Sub:
|
|
return distance[m_cellularDistanceIndex1] - distance[m_cellularDistanceIndex0];
|
|
case Distance2Mul:
|
|
return distance[m_cellularDistanceIndex1] * distance[m_cellularDistanceIndex0];
|
|
case Distance2Div:
|
|
return distance[m_cellularDistanceIndex0] / distance[m_cellularDistanceIndex1];
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void FastNoise::GradientPerturb(FN_DECIMAL &x, FN_DECIMAL &y, FN_DECIMAL &z) const {
|
|
SingleGradientPerturb(0, m_gradientPerturbAmp, m_frequency, x, y, z);
|
|
}
|
|
|
|
void FastNoise::GradientPerturbFractal(FN_DECIMAL &x, FN_DECIMAL &y, FN_DECIMAL &z) const {
|
|
FN_DECIMAL amp = m_gradientPerturbAmp * m_fractalBounding;
|
|
FN_DECIMAL freq = m_frequency;
|
|
int i = 0;
|
|
|
|
SingleGradientPerturb(m_perm[0], amp, m_frequency, x, y, z);
|
|
|
|
while (++i < m_octaves) {
|
|
freq *= m_lacunarity;
|
|
amp *= m_gain;
|
|
SingleGradientPerturb(m_perm[i], amp, freq, x, y, z);
|
|
}
|
|
}
|
|
|
|
void FastNoise::SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL &x, FN_DECIMAL &y, FN_DECIMAL &z) const {
|
|
FN_DECIMAL xf = x * frequency;
|
|
FN_DECIMAL yf = y * frequency;
|
|
FN_DECIMAL zf = z * frequency;
|
|
|
|
int x0 = FastFloor(xf);
|
|
int y0 = FastFloor(yf);
|
|
int z0 = FastFloor(zf);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
int z1 = z0 + 1;
|
|
|
|
FN_DECIMAL xs, ys, zs;
|
|
switch (m_interp) {
|
|
default:
|
|
case Linear:
|
|
xs = xf - (FN_DECIMAL)x0;
|
|
ys = yf - (FN_DECIMAL)y0;
|
|
zs = zf - (FN_DECIMAL)z0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(yf - (FN_DECIMAL)y0);
|
|
zs = InterpHermiteFunc(zf - (FN_DECIMAL)z0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(yf - (FN_DECIMAL)y0);
|
|
zs = InterpQuinticFunc(zf - (FN_DECIMAL)z0);
|
|
break;
|
|
}
|
|
|
|
int lutPos0 = Index3D_256(offset, x0, y0, z0);
|
|
int lutPos1 = Index3D_256(offset, x1, y0, z0);
|
|
|
|
FN_DECIMAL lx0x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
FN_DECIMAL ly0x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
FN_DECIMAL lz0x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
lutPos0 = Index3D_256(offset, x0, y1, z0);
|
|
lutPos1 = Index3D_256(offset, x1, y1, z0);
|
|
|
|
FN_DECIMAL lx1x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
FN_DECIMAL ly1x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
FN_DECIMAL lz1x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
FN_DECIMAL lx0y = Lerp(lx0x, lx1x, ys);
|
|
FN_DECIMAL ly0y = Lerp(ly0x, ly1x, ys);
|
|
FN_DECIMAL lz0y = Lerp(lz0x, lz1x, ys);
|
|
|
|
lutPos0 = Index3D_256(offset, x0, y0, z1);
|
|
lutPos1 = Index3D_256(offset, x1, y0, z1);
|
|
|
|
lx0x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
ly0x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
lz0x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
lutPos0 = Index3D_256(offset, x0, y1, z1);
|
|
lutPos1 = Index3D_256(offset, x1, y1, z1);
|
|
|
|
lx1x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
|
|
ly1x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
|
|
lz1x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
|
|
|
|
x += Lerp(lx0y, Lerp(lx0x, lx1x, ys), zs) * warpAmp;
|
|
y += Lerp(ly0y, Lerp(ly0x, ly1x, ys), zs) * warpAmp;
|
|
z += Lerp(lz0y, Lerp(lz0x, lz1x, ys), zs) * warpAmp;
|
|
}
|
|
|
|
void FastNoise::GradientPerturb(FN_DECIMAL &x, FN_DECIMAL &y) const {
|
|
SingleGradientPerturb(0, m_gradientPerturbAmp, m_frequency, x, y);
|
|
}
|
|
|
|
void FastNoise::GradientPerturbFractal(FN_DECIMAL &x, FN_DECIMAL &y) const {
|
|
FN_DECIMAL amp = m_gradientPerturbAmp * m_fractalBounding;
|
|
FN_DECIMAL freq = m_frequency;
|
|
int i = 0;
|
|
|
|
SingleGradientPerturb(m_perm[0], amp, m_frequency, x, y);
|
|
|
|
while (++i < m_octaves) {
|
|
freq *= m_lacunarity;
|
|
amp *= m_gain;
|
|
SingleGradientPerturb(m_perm[i], amp, freq, x, y);
|
|
}
|
|
}
|
|
|
|
void FastNoise::SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL &x, FN_DECIMAL &y) const {
|
|
FN_DECIMAL xf = x * frequency;
|
|
FN_DECIMAL yf = y * frequency;
|
|
|
|
int x0 = FastFloor(xf);
|
|
int y0 = FastFloor(yf);
|
|
int x1 = x0 + 1;
|
|
int y1 = y0 + 1;
|
|
|
|
FN_DECIMAL xs, ys;
|
|
switch (m_interp) {
|
|
default:
|
|
case Linear:
|
|
xs = xf - (FN_DECIMAL)x0;
|
|
ys = yf - (FN_DECIMAL)y0;
|
|
break;
|
|
case Hermite:
|
|
xs = InterpHermiteFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpHermiteFunc(yf - (FN_DECIMAL)y0);
|
|
break;
|
|
case Quintic:
|
|
xs = InterpQuinticFunc(xf - (FN_DECIMAL)x0);
|
|
ys = InterpQuinticFunc(yf - (FN_DECIMAL)y0);
|
|
break;
|
|
}
|
|
|
|
int lutPos0 = Index2D_256(offset, x0, y0);
|
|
int lutPos1 = Index2D_256(offset, x1, y0);
|
|
|
|
FN_DECIMAL lx0x = Lerp(CELL_2D_X[lutPos0], CELL_2D_X[lutPos1], xs);
|
|
FN_DECIMAL ly0x = Lerp(CELL_2D_Y[lutPos0], CELL_2D_Y[lutPos1], xs);
|
|
|
|
lutPos0 = Index2D_256(offset, x0, y1);
|
|
lutPos1 = Index2D_256(offset, x1, y1);
|
|
|
|
FN_DECIMAL lx1x = Lerp(CELL_2D_X[lutPos0], CELL_2D_X[lutPos1], xs);
|
|
FN_DECIMAL ly1x = Lerp(CELL_2D_Y[lutPos0], CELL_2D_Y[lutPos1], xs);
|
|
|
|
x += Lerp(lx0x, lx1x, ys) * warpAmp;
|
|
y += Lerp(ly0x, ly1x, ys) * warpAmp;
|
|
}
|
|
|
|
} // namespace fastnoise
|