pandemonium_engine/modules/fastnoise/lib/FastNoise.cpp

3555 lines
97 KiB
C++

// FastNoise.cpp
//
// MIT License
//
// Copyright(c) 2017 Jordan Peck
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// The developer's email is jorzixdan.me2@gzixmail.com (for great email, take
// off every 'zix'.)
//
#include "FastNoise.h"
#include <assert.h>
#include <math.h>
#include <algorithm>
#include <random>
namespace fastnoise {
const FN_DECIMAL GRAD_X[] = {
1, -1, 1, -1,
1, -1, 1, -1,
0, 0, 0, 0
};
const FN_DECIMAL GRAD_Y[] = {
1, 1, -1, -1,
0, 0, 0, 0,
1, -1, 1, -1
};
const FN_DECIMAL GRAD_Z[] = {
0, 0, 0, 0,
1, 1, -1, -1,
1, 1, -1, -1
};
const FN_DECIMAL GRAD_4D[] = {
0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1,
0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1,
1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1,
-1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1,
1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1,
-1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1,
1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0,
-1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0
};
const FN_DECIMAL VAL_LUT[] = {
FN_DECIMAL(0.3490196078),
FN_DECIMAL(0.4352941176),
FN_DECIMAL(-0.4509803922),
FN_DECIMAL(0.6392156863),
FN_DECIMAL(0.5843137255),
FN_DECIMAL(-0.1215686275),
FN_DECIMAL(0.7176470588),
FN_DECIMAL(-0.1058823529),
FN_DECIMAL(0.3960784314),
FN_DECIMAL(0.0431372549),
FN_DECIMAL(-0.03529411765),
FN_DECIMAL(0.3176470588),
FN_DECIMAL(0.7254901961),
FN_DECIMAL(0.137254902),
FN_DECIMAL(0.8588235294),
FN_DECIMAL(-0.8196078431),
FN_DECIMAL(-0.7960784314),
FN_DECIMAL(-0.3333333333),
FN_DECIMAL(-0.6705882353),
FN_DECIMAL(-0.3882352941),
FN_DECIMAL(0.262745098),
FN_DECIMAL(0.3254901961),
FN_DECIMAL(-0.6470588235),
FN_DECIMAL(-0.9215686275),
FN_DECIMAL(-0.5294117647),
FN_DECIMAL(0.5294117647),
FN_DECIMAL(-0.4666666667),
FN_DECIMAL(0.8117647059),
FN_DECIMAL(0.3803921569),
FN_DECIMAL(0.662745098),
FN_DECIMAL(0.03529411765),
FN_DECIMAL(-0.6156862745),
FN_DECIMAL(-0.01960784314),
FN_DECIMAL(-0.3568627451),
FN_DECIMAL(-0.09019607843),
FN_DECIMAL(0.7490196078),
FN_DECIMAL(0.8352941176),
FN_DECIMAL(-0.4039215686),
FN_DECIMAL(-0.7490196078),
FN_DECIMAL(0.9529411765),
FN_DECIMAL(-0.0431372549),
FN_DECIMAL(-0.9294117647),
FN_DECIMAL(-0.6549019608),
FN_DECIMAL(0.9215686275),
FN_DECIMAL(-0.06666666667),
FN_DECIMAL(-0.4431372549),
FN_DECIMAL(0.4117647059),
FN_DECIMAL(-0.4196078431),
FN_DECIMAL(-0.7176470588),
FN_DECIMAL(-0.8117647059),
FN_DECIMAL(-0.2549019608),
FN_DECIMAL(0.4901960784),
FN_DECIMAL(0.9137254902),
FN_DECIMAL(0.7882352941),
FN_DECIMAL(-1.0),
FN_DECIMAL(-0.4745098039),
FN_DECIMAL(0.7960784314),
FN_DECIMAL(0.8509803922),
FN_DECIMAL(-0.6784313725),
FN_DECIMAL(0.4588235294),
FN_DECIMAL(1.0),
FN_DECIMAL(-0.1843137255),
FN_DECIMAL(0.4509803922),
FN_DECIMAL(0.1450980392),
FN_DECIMAL(-0.231372549),
FN_DECIMAL(-0.968627451),
FN_DECIMAL(-0.8588235294),
FN_DECIMAL(0.4274509804),
FN_DECIMAL(0.003921568627),
FN_DECIMAL(-0.003921568627),
FN_DECIMAL(0.2156862745),
FN_DECIMAL(0.5058823529),
FN_DECIMAL(0.7647058824),
FN_DECIMAL(0.2078431373),
FN_DECIMAL(-0.5921568627),
FN_DECIMAL(0.5764705882),
FN_DECIMAL(-0.1921568627),
FN_DECIMAL(-0.937254902),
FN_DECIMAL(0.08235294118),
FN_DECIMAL(-0.08235294118),
FN_DECIMAL(0.9058823529),
FN_DECIMAL(0.8274509804),
FN_DECIMAL(0.02745098039),
FN_DECIMAL(-0.168627451),
FN_DECIMAL(-0.7803921569),
FN_DECIMAL(0.1137254902),
FN_DECIMAL(-0.9450980392),
FN_DECIMAL(0.2),
FN_DECIMAL(0.01960784314),
FN_DECIMAL(0.5607843137),
FN_DECIMAL(0.2705882353),
FN_DECIMAL(0.4431372549),
FN_DECIMAL(-0.9607843137),
FN_DECIMAL(0.6156862745),
FN_DECIMAL(0.9294117647),
FN_DECIMAL(-0.07450980392),
FN_DECIMAL(0.3098039216),
FN_DECIMAL(0.9921568627),
FN_DECIMAL(-0.9137254902),
FN_DECIMAL(-0.2941176471),
FN_DECIMAL(-0.3411764706),
FN_DECIMAL(-0.6235294118),
FN_DECIMAL(-0.7647058824),
FN_DECIMAL(-0.8901960784),
FN_DECIMAL(0.05882352941),
FN_DECIMAL(0.2392156863),
FN_DECIMAL(0.7333333333),
FN_DECIMAL(0.6549019608),
FN_DECIMAL(0.2470588235),
FN_DECIMAL(0.231372549),
FN_DECIMAL(-0.3960784314),
FN_DECIMAL(-0.05098039216),
FN_DECIMAL(-0.2235294118),
FN_DECIMAL(-0.3725490196),
FN_DECIMAL(0.6235294118),
FN_DECIMAL(0.7019607843),
FN_DECIMAL(-0.8274509804),
FN_DECIMAL(0.4196078431),
FN_DECIMAL(0.07450980392),
FN_DECIMAL(0.8666666667),
FN_DECIMAL(-0.537254902),
FN_DECIMAL(-0.5058823529),
FN_DECIMAL(-0.8039215686),
FN_DECIMAL(0.09019607843),
FN_DECIMAL(-0.4823529412),
FN_DECIMAL(0.6705882353),
FN_DECIMAL(-0.7882352941),
FN_DECIMAL(0.09803921569),
FN_DECIMAL(-0.6078431373),
FN_DECIMAL(0.8039215686),
FN_DECIMAL(-0.6),
FN_DECIMAL(-0.3254901961),
FN_DECIMAL(-0.4117647059),
FN_DECIMAL(-0.01176470588),
FN_DECIMAL(0.4823529412),
FN_DECIMAL(0.168627451),
FN_DECIMAL(0.8745098039),
FN_DECIMAL(-0.3647058824),
FN_DECIMAL(-0.1607843137),
FN_DECIMAL(0.568627451),
FN_DECIMAL(-0.9921568627),
FN_DECIMAL(0.9450980392),
FN_DECIMAL(0.5137254902),
FN_DECIMAL(0.01176470588),
FN_DECIMAL(-0.1450980392),
FN_DECIMAL(-0.5529411765),
FN_DECIMAL(-0.5764705882),
FN_DECIMAL(-0.1137254902),
FN_DECIMAL(0.5215686275),
FN_DECIMAL(0.1607843137),
FN_DECIMAL(0.3725490196),
FN_DECIMAL(-0.2),
FN_DECIMAL(-0.7254901961),
FN_DECIMAL(0.631372549),
FN_DECIMAL(0.7098039216),
FN_DECIMAL(-0.568627451),
FN_DECIMAL(0.1294117647),
FN_DECIMAL(-0.3098039216),
FN_DECIMAL(0.7411764706),
FN_DECIMAL(-0.8509803922),
FN_DECIMAL(0.2549019608),
FN_DECIMAL(-0.6392156863),
FN_DECIMAL(-0.5607843137),
FN_DECIMAL(-0.3176470588),
FN_DECIMAL(0.937254902),
FN_DECIMAL(0.9843137255),
FN_DECIMAL(0.5921568627),
FN_DECIMAL(0.6941176471),
FN_DECIMAL(0.2862745098),
FN_DECIMAL(-0.5215686275),
FN_DECIMAL(0.1764705882),
FN_DECIMAL(0.537254902),
FN_DECIMAL(-0.4901960784),
FN_DECIMAL(-0.4588235294),
FN_DECIMAL(-0.2078431373),
FN_DECIMAL(-0.2156862745),
FN_DECIMAL(0.7725490196),
FN_DECIMAL(0.3647058824),
FN_DECIMAL(-0.2392156863),
FN_DECIMAL(0.2784313725),
FN_DECIMAL(-0.8823529412),
FN_DECIMAL(0.8980392157),
FN_DECIMAL(0.1215686275),
FN_DECIMAL(0.1058823529),
FN_DECIMAL(-0.8745098039),
FN_DECIMAL(-0.9843137255),
FN_DECIMAL(-0.7019607843),
FN_DECIMAL(0.9607843137),
FN_DECIMAL(0.2941176471),
FN_DECIMAL(0.3411764706),
FN_DECIMAL(0.1529411765),
FN_DECIMAL(0.06666666667),
FN_DECIMAL(-0.9764705882),
FN_DECIMAL(0.3019607843),
FN_DECIMAL(0.6470588235),
FN_DECIMAL(-0.5843137255),
FN_DECIMAL(0.05098039216),
FN_DECIMAL(-0.5137254902),
FN_DECIMAL(-0.137254902),
FN_DECIMAL(0.3882352941),
FN_DECIMAL(-0.262745098),
FN_DECIMAL(-0.3019607843),
FN_DECIMAL(-0.1764705882),
FN_DECIMAL(-0.7568627451),
FN_DECIMAL(0.1843137255),
FN_DECIMAL(-0.5450980392),
FN_DECIMAL(-0.4980392157),
FN_DECIMAL(-0.2784313725),
FN_DECIMAL(-0.9529411765),
FN_DECIMAL(-0.09803921569),
FN_DECIMAL(0.8901960784),
FN_DECIMAL(-0.2862745098),
FN_DECIMAL(-0.3803921569),
FN_DECIMAL(0.5529411765),
FN_DECIMAL(0.7803921569),
FN_DECIMAL(-0.8352941176),
FN_DECIMAL(0.6862745098),
FN_DECIMAL(0.7568627451),
FN_DECIMAL(0.4980392157),
FN_DECIMAL(-0.6862745098),
FN_DECIMAL(-0.8980392157),
FN_DECIMAL(-0.7725490196),
FN_DECIMAL(-0.7098039216),
FN_DECIMAL(-0.2470588235),
FN_DECIMAL(-0.9058823529),
FN_DECIMAL(0.9764705882),
FN_DECIMAL(0.1921568627),
FN_DECIMAL(0.8431372549),
FN_DECIMAL(-0.05882352941),
FN_DECIMAL(0.3568627451),
FN_DECIMAL(0.6078431373),
FN_DECIMAL(0.5450980392),
FN_DECIMAL(0.4039215686),
FN_DECIMAL(-0.7333333333),
FN_DECIMAL(-0.4274509804),
FN_DECIMAL(0.6),
FN_DECIMAL(0.6784313725),
FN_DECIMAL(-0.631372549),
FN_DECIMAL(-0.02745098039),
FN_DECIMAL(-0.1294117647),
FN_DECIMAL(0.3333333333),
FN_DECIMAL(-0.8431372549),
FN_DECIMAL(0.2235294118),
FN_DECIMAL(-0.3490196078),
FN_DECIMAL(-0.6941176471),
FN_DECIMAL(0.8823529412),
FN_DECIMAL(0.4745098039),
FN_DECIMAL(0.4666666667),
FN_DECIMAL(-0.7411764706),
FN_DECIMAL(-0.2705882353),
FN_DECIMAL(0.968627451),
FN_DECIMAL(0.8196078431),
FN_DECIMAL(-0.662745098),
FN_DECIMAL(-0.4352941176),
FN_DECIMAL(-0.8666666667),
FN_DECIMAL(-0.1529411765),
};
const FN_DECIMAL CELL_2D_X[] = {
FN_DECIMAL(-0.6440658039),
FN_DECIMAL(-0.08028078721),
FN_DECIMAL(0.9983546168),
FN_DECIMAL(0.9869492062),
FN_DECIMAL(0.9284746418),
FN_DECIMAL(0.6051097552),
FN_DECIMAL(-0.794167404),
FN_DECIMAL(-0.3488667991),
FN_DECIMAL(-0.943136526),
FN_DECIMAL(-0.9968171318),
FN_DECIMAL(0.8740961579),
FN_DECIMAL(0.1421139764),
FN_DECIMAL(0.4282553608),
FN_DECIMAL(-0.9986665833),
FN_DECIMAL(0.9996760121),
FN_DECIMAL(-0.06248383632),
FN_DECIMAL(0.7120139305),
FN_DECIMAL(0.8917660409),
FN_DECIMAL(0.1094842955),
FN_DECIMAL(-0.8730880804),
FN_DECIMAL(0.2594811489),
FN_DECIMAL(-0.6690063346),
FN_DECIMAL(-0.9996834972),
FN_DECIMAL(-0.8803608671),
FN_DECIMAL(-0.8166554937),
FN_DECIMAL(0.8955599676),
FN_DECIMAL(-0.9398321388),
FN_DECIMAL(0.07615451399),
FN_DECIMAL(-0.7147270565),
FN_DECIMAL(0.8707354457),
FN_DECIMAL(-0.9580008579),
FN_DECIMAL(0.4905965632),
FN_DECIMAL(0.786775944),
FN_DECIMAL(0.1079711577),
FN_DECIMAL(0.2686638979),
FN_DECIMAL(0.6113487322),
FN_DECIMAL(-0.530770584),
FN_DECIMAL(-0.7837268286),
FN_DECIMAL(-0.8558691039),
FN_DECIMAL(-0.5726093896),
FN_DECIMAL(-0.9830740914),
FN_DECIMAL(0.7087766359),
FN_DECIMAL(0.6807027153),
FN_DECIMAL(-0.08864708788),
FN_DECIMAL(0.6704485923),
FN_DECIMAL(-0.1350735482),
FN_DECIMAL(-0.9381333003),
FN_DECIMAL(0.9756655376),
FN_DECIMAL(0.4231433671),
FN_DECIMAL(-0.4959787385),
FN_DECIMAL(0.1005554325),
FN_DECIMAL(-0.7645857281),
FN_DECIMAL(-0.5859053796),
FN_DECIMAL(-0.9751154306),
FN_DECIMAL(-0.6972258572),
FN_DECIMAL(0.7907012002),
FN_DECIMAL(-0.9109899213),
FN_DECIMAL(-0.9584307894),
FN_DECIMAL(-0.8269529333),
FN_DECIMAL(0.2608264719),
FN_DECIMAL(-0.7773760119),
FN_DECIMAL(0.7606456974),
FN_DECIMAL(-0.8961083758),
FN_DECIMAL(-0.9838134719),
FN_DECIMAL(0.7338893576),
FN_DECIMAL(0.2161226729),
FN_DECIMAL(0.673509891),
FN_DECIMAL(-0.5512056873),
FN_DECIMAL(0.6899744332),
FN_DECIMAL(0.868004831),
FN_DECIMAL(0.5897430311),
FN_DECIMAL(-0.8950444221),
FN_DECIMAL(-0.3595752773),
FN_DECIMAL(0.8209486981),
FN_DECIMAL(-0.2912360132),
FN_DECIMAL(-0.9965011374),
FN_DECIMAL(0.9766994634),
FN_DECIMAL(0.738790822),
FN_DECIMAL(-0.4730947722),
FN_DECIMAL(0.8946479441),
FN_DECIMAL(-0.6943628971),
FN_DECIMAL(-0.6620468182),
FN_DECIMAL(-0.0887255502),
FN_DECIMAL(-0.7512250855),
FN_DECIMAL(-0.5322986898),
FN_DECIMAL(0.5226295385),
FN_DECIMAL(0.2296318375),
FN_DECIMAL(0.7915307344),
FN_DECIMAL(-0.2756485999),
FN_DECIMAL(-0.6900234522),
FN_DECIMAL(0.07090588086),
FN_DECIMAL(0.5981278485),
FN_DECIMAL(0.3033429312),
FN_DECIMAL(-0.7253142797),
FN_DECIMAL(-0.9855874307),
FN_DECIMAL(-0.1761843396),
FN_DECIMAL(-0.6438468325),
FN_DECIMAL(-0.9956136595),
FN_DECIMAL(0.8541580762),
FN_DECIMAL(-0.9999807666),
FN_DECIMAL(-0.02152416253),
FN_DECIMAL(-0.8705983095),
FN_DECIMAL(-0.1197138014),
FN_DECIMAL(-0.992107781),
FN_DECIMAL(-0.9091181546),
FN_DECIMAL(0.788610536),
FN_DECIMAL(-0.994636402),
FN_DECIMAL(0.4211256853),
FN_DECIMAL(0.3110430857),
FN_DECIMAL(-0.4031127839),
FN_DECIMAL(0.7610684239),
FN_DECIMAL(0.7685674467),
FN_DECIMAL(0.152271555),
FN_DECIMAL(-0.9364648723),
FN_DECIMAL(0.1681333739),
FN_DECIMAL(-0.3567427907),
FN_DECIMAL(-0.418445483),
FN_DECIMAL(-0.98774778),
FN_DECIMAL(0.8705250765),
FN_DECIMAL(-0.8911701067),
FN_DECIMAL(-0.7315350966),
FN_DECIMAL(0.6030885658),
FN_DECIMAL(-0.4149130821),
FN_DECIMAL(0.7585339481),
FN_DECIMAL(0.6963196535),
FN_DECIMAL(0.8332685012),
FN_DECIMAL(-0.8086815232),
FN_DECIMAL(0.7518116724),
FN_DECIMAL(-0.3490535894),
FN_DECIMAL(0.6972110903),
FN_DECIMAL(-0.8795676928),
FN_DECIMAL(-0.6442331882),
FN_DECIMAL(0.6610236811),
FN_DECIMAL(-0.9853565782),
FN_DECIMAL(-0.590338458),
FN_DECIMAL(0.09843602117),
FN_DECIMAL(0.5646534882),
FN_DECIMAL(-0.6023259233),
FN_DECIMAL(-0.3539248861),
FN_DECIMAL(0.5132728656),
FN_DECIMAL(0.9380385118),
FN_DECIMAL(-0.7599270056),
FN_DECIMAL(-0.7425936564),
FN_DECIMAL(-0.6679610562),
FN_DECIMAL(-0.3018497816),
FN_DECIMAL(0.814478266),
FN_DECIMAL(0.03777430269),
FN_DECIMAL(-0.7514235086),
FN_DECIMAL(0.9662556939),
FN_DECIMAL(-0.4720194901),
FN_DECIMAL(-0.435054126),
FN_DECIMAL(0.7091901235),
FN_DECIMAL(0.929379209),
FN_DECIMAL(0.9997434357),
FN_DECIMAL(0.8306320299),
FN_DECIMAL(-0.9434019629),
FN_DECIMAL(-0.133133759),
FN_DECIMAL(0.5048413216),
FN_DECIMAL(0.3711995273),
FN_DECIMAL(0.98552091),
FN_DECIMAL(0.7401857005),
FN_DECIMAL(-0.9999981398),
FN_DECIMAL(-0.2144033253),
FN_DECIMAL(0.4808624681),
FN_DECIMAL(-0.413835885),
FN_DECIMAL(0.644229305),
FN_DECIMAL(0.9626648696),
FN_DECIMAL(0.1833665934),
FN_DECIMAL(0.5794129),
FN_DECIMAL(0.01404446873),
FN_DECIMAL(0.4388494993),
FN_DECIMAL(0.5213612322),
FN_DECIMAL(-0.5281609948),
FN_DECIMAL(-0.9745306846),
FN_DECIMAL(-0.9904373013),
FN_DECIMAL(0.9100232252),
FN_DECIMAL(-0.9914057719),
FN_DECIMAL(0.7892627765),
FN_DECIMAL(0.3364421659),
FN_DECIMAL(-0.9416099764),
FN_DECIMAL(0.7802732656),
FN_DECIMAL(0.886302871),
FN_DECIMAL(0.6524471291),
FN_DECIMAL(0.5762186726),
FN_DECIMAL(-0.08987644664),
FN_DECIMAL(-0.2177026782),
FN_DECIMAL(-0.9720345052),
FN_DECIMAL(-0.05722538858),
FN_DECIMAL(0.8105983127),
FN_DECIMAL(0.3410261032),
FN_DECIMAL(0.6452309645),
FN_DECIMAL(-0.7810612152),
FN_DECIMAL(0.9989395718),
FN_DECIMAL(-0.808247815),
FN_DECIMAL(0.6370177929),
FN_DECIMAL(0.5844658772),
FN_DECIMAL(0.2054070861),
FN_DECIMAL(0.055960522),
FN_DECIMAL(-0.995827561),
FN_DECIMAL(0.893409165),
FN_DECIMAL(-0.931516824),
FN_DECIMAL(0.328969469),
FN_DECIMAL(-0.3193837488),
FN_DECIMAL(0.7314755657),
FN_DECIMAL(-0.7913517714),
FN_DECIMAL(-0.2204109786),
FN_DECIMAL(0.9955900414),
FN_DECIMAL(-0.7112353139),
FN_DECIMAL(-0.7935008741),
FN_DECIMAL(-0.9961918204),
FN_DECIMAL(-0.9714163995),
FN_DECIMAL(-0.9566188669),
FN_DECIMAL(0.2748495632),
FN_DECIMAL(-0.4681743221),
FN_DECIMAL(-0.9614449642),
FN_DECIMAL(0.585194072),
FN_DECIMAL(0.4532946061),
FN_DECIMAL(-0.9916113176),
FN_DECIMAL(0.942479587),
FN_DECIMAL(-0.9813704753),
FN_DECIMAL(-0.6538429571),
FN_DECIMAL(0.2923335053),
FN_DECIMAL(-0.2246660704),
FN_DECIMAL(-0.1800781949),
FN_DECIMAL(-0.9581216256),
FN_DECIMAL(0.552215082),
FN_DECIMAL(-0.9296791922),
FN_DECIMAL(0.643183699),
FN_DECIMAL(0.9997325981),
FN_DECIMAL(-0.4606920354),
FN_DECIMAL(-0.2148721265),
FN_DECIMAL(0.3482070809),
FN_DECIMAL(0.3075517813),
FN_DECIMAL(0.6274756393),
FN_DECIMAL(0.8910881765),
FN_DECIMAL(-0.6397771309),
FN_DECIMAL(-0.4479080125),
FN_DECIMAL(-0.5247665011),
FN_DECIMAL(-0.8386507094),
FN_DECIMAL(0.3901291416),
FN_DECIMAL(0.1458336921),
FN_DECIMAL(0.01624613149),
FN_DECIMAL(-0.8273199879),
FN_DECIMAL(0.5611100679),
FN_DECIMAL(-0.8380219841),
FN_DECIMAL(-0.9856122234),
FN_DECIMAL(-0.861398618),
FN_DECIMAL(0.6398413916),
FN_DECIMAL(0.2694510795),
FN_DECIMAL(0.4327334514),
FN_DECIMAL(-0.9960265354),
FN_DECIMAL(-0.939570655),
FN_DECIMAL(-0.8846996446),
FN_DECIMAL(0.7642113189),
FN_DECIMAL(-0.7002080528),
FN_DECIMAL(0.664508256),
};
const FN_DECIMAL CELL_2D_Y[] = {
FN_DECIMAL(0.7649700911),
FN_DECIMAL(0.9967722885),
FN_DECIMAL(0.05734160033),
FN_DECIMAL(-0.1610318741),
FN_DECIMAL(0.371395799),
FN_DECIMAL(-0.7961420628),
FN_DECIMAL(0.6076990492),
FN_DECIMAL(-0.9371723195),
FN_DECIMAL(0.3324056156),
FN_DECIMAL(0.07972205329),
FN_DECIMAL(-0.4857529277),
FN_DECIMAL(-0.9898503007),
FN_DECIMAL(0.9036577593),
FN_DECIMAL(0.05162417479),
FN_DECIMAL(-0.02545330525),
FN_DECIMAL(-0.998045976),
FN_DECIMAL(-0.7021653386),
FN_DECIMAL(-0.4524967717),
FN_DECIMAL(-0.9939885256),
FN_DECIMAL(-0.4875625128),
FN_DECIMAL(-0.9657481729),
FN_DECIMAL(-0.7432567015),
FN_DECIMAL(0.02515761212),
FN_DECIMAL(0.4743044842),
FN_DECIMAL(0.5771254669),
FN_DECIMAL(0.4449408324),
FN_DECIMAL(0.3416365773),
FN_DECIMAL(0.9970960285),
FN_DECIMAL(0.6994034849),
FN_DECIMAL(0.4917517499),
FN_DECIMAL(0.286765333),
FN_DECIMAL(0.8713868327),
FN_DECIMAL(0.6172387009),
FN_DECIMAL(0.9941540269),
FN_DECIMAL(0.9632339851),
FN_DECIMAL(-0.7913613129),
FN_DECIMAL(0.847515538),
FN_DECIMAL(0.6211056739),
FN_DECIMAL(0.5171924952),
FN_DECIMAL(-0.8198283277),
FN_DECIMAL(-0.1832084353),
FN_DECIMAL(0.7054329737),
FN_DECIMAL(0.7325597678),
FN_DECIMAL(0.9960630973),
FN_DECIMAL(0.7419559859),
FN_DECIMAL(0.9908355749),
FN_DECIMAL(-0.346274329),
FN_DECIMAL(0.2192641299),
FN_DECIMAL(-0.9060627411),
FN_DECIMAL(-0.8683346653),
FN_DECIMAL(0.9949314574),
FN_DECIMAL(-0.6445220433),
FN_DECIMAL(-0.8103794704),
FN_DECIMAL(-0.2216977607),
FN_DECIMAL(0.7168515217),
FN_DECIMAL(0.612202264),
FN_DECIMAL(-0.412428616),
FN_DECIMAL(0.285325116),
FN_DECIMAL(0.56227115),
FN_DECIMAL(-0.9653857009),
FN_DECIMAL(-0.6290361962),
FN_DECIMAL(0.6491672535),
FN_DECIMAL(0.443835306),
FN_DECIMAL(-0.1791955706),
FN_DECIMAL(-0.6792690269),
FN_DECIMAL(-0.9763662173),
FN_DECIMAL(0.7391782104),
FN_DECIMAL(0.8343693968),
FN_DECIMAL(0.7238337389),
FN_DECIMAL(0.4965557504),
FN_DECIMAL(0.8075909592),
FN_DECIMAL(-0.4459769977),
FN_DECIMAL(-0.9331160806),
FN_DECIMAL(-0.5710019572),
FN_DECIMAL(0.9566512346),
FN_DECIMAL(-0.08357920318),
FN_DECIMAL(0.2146116448),
FN_DECIMAL(-0.6739348049),
FN_DECIMAL(0.8810115417),
FN_DECIMAL(0.4467718167),
FN_DECIMAL(-0.7196250184),
FN_DECIMAL(-0.749462481),
FN_DECIMAL(0.9960561112),
FN_DECIMAL(0.6600461127),
FN_DECIMAL(-0.8465566164),
FN_DECIMAL(-0.8525598897),
FN_DECIMAL(-0.9732775654),
FN_DECIMAL(0.6111293616),
FN_DECIMAL(-0.9612584717),
FN_DECIMAL(-0.7237870097),
FN_DECIMAL(-0.9974830104),
FN_DECIMAL(-0.8014006968),
FN_DECIMAL(0.9528814544),
FN_DECIMAL(-0.6884178931),
FN_DECIMAL(-0.1691668301),
FN_DECIMAL(0.9843571905),
FN_DECIMAL(0.7651544003),
FN_DECIMAL(-0.09355982605),
FN_DECIMAL(-0.5200134429),
FN_DECIMAL(-0.006202125807),
FN_DECIMAL(-0.9997683284),
FN_DECIMAL(0.4919944954),
FN_DECIMAL(-0.9928084436),
FN_DECIMAL(-0.1253880012),
FN_DECIMAL(-0.4165383308),
FN_DECIMAL(-0.6148930171),
FN_DECIMAL(-0.1034332049),
FN_DECIMAL(-0.9070022917),
FN_DECIMAL(-0.9503958117),
FN_DECIMAL(0.9151503065),
FN_DECIMAL(-0.6486716073),
FN_DECIMAL(0.6397687707),
FN_DECIMAL(-0.9883386937),
FN_DECIMAL(0.3507613761),
FN_DECIMAL(0.9857642561),
FN_DECIMAL(-0.9342026446),
FN_DECIMAL(-0.9082419159),
FN_DECIMAL(0.1560587169),
FN_DECIMAL(0.4921240607),
FN_DECIMAL(-0.453669308),
FN_DECIMAL(0.6818037859),
FN_DECIMAL(0.7976742329),
FN_DECIMAL(0.9098610522),
FN_DECIMAL(0.651633524),
FN_DECIMAL(0.7177318024),
FN_DECIMAL(-0.5528685241),
FN_DECIMAL(0.5882467118),
FN_DECIMAL(0.6593778956),
FN_DECIMAL(0.9371027648),
FN_DECIMAL(-0.7168658839),
FN_DECIMAL(-0.4757737632),
FN_DECIMAL(0.7648291307),
FN_DECIMAL(0.7503650398),
FN_DECIMAL(0.1705063456),
FN_DECIMAL(-0.8071558121),
FN_DECIMAL(-0.9951433815),
FN_DECIMAL(-0.8253280792),
FN_DECIMAL(-0.7982502628),
FN_DECIMAL(0.9352738503),
FN_DECIMAL(0.8582254747),
FN_DECIMAL(-0.3465310238),
FN_DECIMAL(0.65000842),
FN_DECIMAL(-0.6697422351),
FN_DECIMAL(0.7441962291),
FN_DECIMAL(-0.9533555),
FN_DECIMAL(0.5801940659),
FN_DECIMAL(-0.9992862963),
FN_DECIMAL(-0.659820211),
FN_DECIMAL(0.2575848092),
FN_DECIMAL(0.881588113),
FN_DECIMAL(-0.9004043022),
FN_DECIMAL(-0.7050172826),
FN_DECIMAL(0.369126382),
FN_DECIMAL(-0.02265088836),
FN_DECIMAL(0.5568217228),
FN_DECIMAL(-0.3316515286),
FN_DECIMAL(0.991098079),
FN_DECIMAL(-0.863212164),
FN_DECIMAL(-0.9285531277),
FN_DECIMAL(0.1695539323),
FN_DECIMAL(-0.672402505),
FN_DECIMAL(-0.001928841934),
FN_DECIMAL(0.9767452145),
FN_DECIMAL(-0.8767960349),
FN_DECIMAL(0.9103515037),
FN_DECIMAL(-0.7648324016),
FN_DECIMAL(0.2706960452),
FN_DECIMAL(-0.9830446035),
FN_DECIMAL(0.8150341657),
FN_DECIMAL(-0.9999013716),
FN_DECIMAL(-0.8985605806),
FN_DECIMAL(0.8533360801),
FN_DECIMAL(0.8491442537),
FN_DECIMAL(-0.2242541966),
FN_DECIMAL(-0.1379635899),
FN_DECIMAL(-0.4145572694),
FN_DECIMAL(0.1308227633),
FN_DECIMAL(0.6140555916),
FN_DECIMAL(0.9417041303),
FN_DECIMAL(-0.336705587),
FN_DECIMAL(-0.6254387508),
FN_DECIMAL(0.4631060578),
FN_DECIMAL(-0.7578342456),
FN_DECIMAL(-0.8172955655),
FN_DECIMAL(-0.9959529228),
FN_DECIMAL(-0.9760151351),
FN_DECIMAL(0.2348380732),
FN_DECIMAL(-0.9983612848),
FN_DECIMAL(0.5856025746),
FN_DECIMAL(-0.9400538266),
FN_DECIMAL(-0.7639875669),
FN_DECIMAL(0.6244544645),
FN_DECIMAL(0.04604054566),
FN_DECIMAL(0.5888424828),
FN_DECIMAL(0.7708490978),
FN_DECIMAL(-0.8114182882),
FN_DECIMAL(0.9786766212),
FN_DECIMAL(-0.9984329822),
FN_DECIMAL(0.09125496582),
FN_DECIMAL(-0.4492438803),
FN_DECIMAL(-0.3636982357),
FN_DECIMAL(0.9443405575),
FN_DECIMAL(-0.9476254645),
FN_DECIMAL(-0.6818676535),
FN_DECIMAL(-0.6113610831),
FN_DECIMAL(0.9754070948),
FN_DECIMAL(-0.0938108173),
FN_DECIMAL(-0.7029540015),
FN_DECIMAL(-0.6085691109),
FN_DECIMAL(-0.08718862881),
FN_DECIMAL(-0.237381926),
FN_DECIMAL(0.2913423132),
FN_DECIMAL(0.9614872426),
FN_DECIMAL(0.8836361266),
FN_DECIMAL(-0.2749974196),
FN_DECIMAL(-0.8108932717),
FN_DECIMAL(-0.8913607575),
FN_DECIMAL(0.129255541),
FN_DECIMAL(-0.3342637104),
FN_DECIMAL(-0.1921249337),
FN_DECIMAL(-0.7566302845),
FN_DECIMAL(-0.9563164339),
FN_DECIMAL(-0.9744358146),
FN_DECIMAL(0.9836522982),
FN_DECIMAL(-0.2863615732),
FN_DECIMAL(0.8337016872),
FN_DECIMAL(0.3683701937),
FN_DECIMAL(0.7657119102),
FN_DECIMAL(-0.02312427772),
FN_DECIMAL(0.8875600535),
FN_DECIMAL(0.976642191),
FN_DECIMAL(0.9374176384),
FN_DECIMAL(0.9515313457),
FN_DECIMAL(-0.7786361937),
FN_DECIMAL(-0.4538302125),
FN_DECIMAL(-0.7685604874),
FN_DECIMAL(-0.8940796454),
FN_DECIMAL(-0.8512462154),
FN_DECIMAL(0.5446696133),
FN_DECIMAL(0.9207601495),
FN_DECIMAL(-0.9893091197),
FN_DECIMAL(-0.9998680229),
FN_DECIMAL(0.5617309299),
FN_DECIMAL(-0.8277411985),
FN_DECIMAL(0.545636467),
FN_DECIMAL(0.1690223212),
FN_DECIMAL(-0.5079295433),
FN_DECIMAL(0.7685069899),
FN_DECIMAL(-0.9630140787),
FN_DECIMAL(0.9015219132),
FN_DECIMAL(0.08905695279),
FN_DECIMAL(-0.3423550559),
FN_DECIMAL(-0.4661614943),
FN_DECIMAL(-0.6449659371),
FN_DECIMAL(0.7139388509),
FN_DECIMAL(0.7472809229),
};
const FN_DECIMAL CELL_3D_X[] = {
FN_DECIMAL(0.3752498686),
FN_DECIMAL(0.687188096),
FN_DECIMAL(0.2248135212),
FN_DECIMAL(0.6692006647),
FN_DECIMAL(-0.4376476931),
FN_DECIMAL(0.6139972552),
FN_DECIMAL(0.9494563929),
FN_DECIMAL(0.8065108882),
FN_DECIMAL(-0.2218812853),
FN_DECIMAL(0.8484661167),
FN_DECIMAL(0.5551817596),
FN_DECIMAL(0.2133903499),
FN_DECIMAL(0.5195126593),
FN_DECIMAL(-0.6440141975),
FN_DECIMAL(-0.5192897331),
FN_DECIMAL(-0.3697654077),
FN_DECIMAL(-0.07927779647),
FN_DECIMAL(0.4187757321),
FN_DECIMAL(-0.750078731),
FN_DECIMAL(0.6579554632),
FN_DECIMAL(-0.6859803838),
FN_DECIMAL(-0.6878407087),
FN_DECIMAL(0.9490848347),
FN_DECIMAL(0.5795829433),
FN_DECIMAL(-0.5325976529),
FN_DECIMAL(-0.1363699466),
FN_DECIMAL(0.417665879),
FN_DECIMAL(-0.9108236468),
FN_DECIMAL(0.4438605427),
FN_DECIMAL(0.819294887),
FN_DECIMAL(-0.4033873915),
FN_DECIMAL(-0.2817317705),
FN_DECIMAL(0.3969665622),
FN_DECIMAL(0.5323450134),
FN_DECIMAL(-0.6833017297),
FN_DECIMAL(0.3881436661),
FN_DECIMAL(-0.7119144767),
FN_DECIMAL(-0.2306979838),
FN_DECIMAL(-0.9398873022),
FN_DECIMAL(0.1701906676),
FN_DECIMAL(-0.4261839496),
FN_DECIMAL(-0.003712295499),
FN_DECIMAL(-0.734675004),
FN_DECIMAL(-0.3195046015),
FN_DECIMAL(0.7345307424),
FN_DECIMAL(0.9766246496),
FN_DECIMAL(-0.02003735175),
FN_DECIMAL(-0.4824156342),
FN_DECIMAL(0.4245892007),
FN_DECIMAL(0.9072427669),
FN_DECIMAL(0.593346808),
FN_DECIMAL(-0.8911762541),
FN_DECIMAL(-0.7657571834),
FN_DECIMAL(-0.5268198896),
FN_DECIMAL(-0.8801903279),
FN_DECIMAL(-0.6296409617),
FN_DECIMAL(-0.09492481344),
FN_DECIMAL(-0.4920470525),
FN_DECIMAL(0.7307666154),
FN_DECIMAL(-0.2514540636),
FN_DECIMAL(-0.3356210347),
FN_DECIMAL(-0.3522787894),
FN_DECIMAL(0.87847885),
FN_DECIMAL(-0.7424096346),
FN_DECIMAL(0.5757585274),
FN_DECIMAL(0.4519299338),
FN_DECIMAL(0.6420368628),
FN_DECIMAL(-0.1128478447),
FN_DECIMAL(0.499874883),
FN_DECIMAL(0.5291681739),
FN_DECIMAL(-0.5098837195),
FN_DECIMAL(0.5639583502),
FN_DECIMAL(-0.8456386526),
FN_DECIMAL(-0.9657134875),
FN_DECIMAL(-0.576437342),
FN_DECIMAL(-0.5666013014),
FN_DECIMAL(0.5667702405),
FN_DECIMAL(-0.481316582),
FN_DECIMAL(0.7313389916),
FN_DECIMAL(-0.3805628566),
FN_DECIMAL(-0.6512675909),
FN_DECIMAL(-0.2787156951),
FN_DECIMAL(0.8648059114),
FN_DECIMAL(-0.9730216276),
FN_DECIMAL(-0.8335820906),
FN_DECIMAL(0.2673159641),
FN_DECIMAL(0.231150148),
FN_DECIMAL(0.01286214638),
FN_DECIMAL(0.6774953261),
FN_DECIMAL(0.6542885718),
FN_DECIMAL(-0.02545450161),
FN_DECIMAL(0.2101238586),
FN_DECIMAL(-0.5572105885),
FN_DECIMAL(0.813705672),
FN_DECIMAL(-0.7546026951),
FN_DECIMAL(-0.2502500006),
FN_DECIMAL(-0.9979289381),
FN_DECIMAL(0.7024037039),
FN_DECIMAL(0.08990874624),
FN_DECIMAL(0.8170812432),
FN_DECIMAL(0.4226980265),
FN_DECIMAL(-0.2442153475),
FN_DECIMAL(-0.9183326731),
FN_DECIMAL(0.6068222411),
FN_DECIMAL(0.818676691),
FN_DECIMAL(-0.7236735282),
FN_DECIMAL(-0.5383903295),
FN_DECIMAL(-0.6269337242),
FN_DECIMAL(-0.0939331121),
FN_DECIMAL(0.9203878539),
FN_DECIMAL(-0.7256396824),
FN_DECIMAL(0.6292431149),
FN_DECIMAL(0.4234156978),
FN_DECIMAL(0.006685688024),
FN_DECIMAL(-0.2598694113),
FN_DECIMAL(0.6408036421),
FN_DECIMAL(0.05899871622),
FN_DECIMAL(0.7090281418),
FN_DECIMAL(-0.5905222072),
FN_DECIMAL(0.3128214264),
FN_DECIMAL(-0.691925826),
FN_DECIMAL(0.3634019349),
FN_DECIMAL(-0.6772511147),
FN_DECIMAL(-0.3204583896),
FN_DECIMAL(-0.3906740409),
FN_DECIMAL(-0.3342190395),
FN_DECIMAL(-0.517779592),
FN_DECIMAL(-0.6817711267),
FN_DECIMAL(0.6422383105),
FN_DECIMAL(0.4388482478),
FN_DECIMAL(0.2968562611),
FN_DECIMAL(-0.2019778353),
FN_DECIMAL(0.6014865048),
FN_DECIMAL(0.9519280722),
FN_DECIMAL(0.3398889569),
FN_DECIMAL(0.8179709354),
FN_DECIMAL(0.2365522154),
FN_DECIMAL(0.3262175096),
FN_DECIMAL(-0.8060715954),
FN_DECIMAL(-0.2068642503),
FN_DECIMAL(0.6208057279),
FN_DECIMAL(-0.5274282502),
FN_DECIMAL(-0.3722334928),
FN_DECIMAL(-0.8923412971),
FN_DECIMAL(0.5341834201),
FN_DECIMAL(-0.3663701513),
FN_DECIMAL(-0.6114600319),
FN_DECIMAL(0.5026307556),
FN_DECIMAL(0.8396151729),
FN_DECIMAL(0.9245042467),
FN_DECIMAL(-0.7994843957),
FN_DECIMAL(-0.5357200589),
FN_DECIMAL(-0.6283359739),
FN_DECIMAL(-0.61351886),
FN_DECIMAL(-0.875632008),
FN_DECIMAL(-0.5278879423),
FN_DECIMAL(0.9087491985),
FN_DECIMAL(-0.03500215466),
FN_DECIMAL(-0.261365798),
FN_DECIMAL(-0.579523541),
FN_DECIMAL(-0.3765052689),
FN_DECIMAL(-0.74398252),
FN_DECIMAL(0.4257318052),
FN_DECIMAL(-0.1214508921),
FN_DECIMAL(0.8561809753),
FN_DECIMAL(0.6802835104),
FN_DECIMAL(-0.5452131039),
FN_DECIMAL(-0.1997156478),
FN_DECIMAL(0.4562348357),
FN_DECIMAL(-0.811704301),
FN_DECIMAL(0.67793962),
FN_DECIMAL(-0.9237819106),
FN_DECIMAL(0.6973511259),
FN_DECIMAL(-0.5189506),
FN_DECIMAL(0.5517320032),
FN_DECIMAL(-0.396710831),
FN_DECIMAL(0.5493762815),
FN_DECIMAL(-0.2507853002),
FN_DECIMAL(0.4788634005),
FN_DECIMAL(0.387333516),
FN_DECIMAL(-0.2176515694),
FN_DECIMAL(0.6749832419),
FN_DECIMAL(0.2148283022),
FN_DECIMAL(-0.7521815872),
FN_DECIMAL(0.4697000159),
FN_DECIMAL(0.7890593699),
FN_DECIMAL(-0.7606162952),
FN_DECIMAL(0.01083397843),
FN_DECIMAL(0.5254091908),
FN_DECIMAL(-0.6748025877),
FN_DECIMAL(0.751091524),
FN_DECIMAL(0.05259056135),
FN_DECIMAL(0.01889481232),
FN_DECIMAL(-0.6037423727),
FN_DECIMAL(-0.6542965129),
FN_DECIMAL(0.08873301081),
FN_DECIMAL(-0.6191345671),
FN_DECIMAL(0.4331858488),
FN_DECIMAL(-0.3858351946),
FN_DECIMAL(-0.1429059747),
FN_DECIMAL(0.4118221036),
FN_DECIMAL(-0.6247153214),
FN_DECIMAL(-0.611423014),
FN_DECIMAL(0.5542939606),
FN_DECIMAL(-0.9432768808),
FN_DECIMAL(-0.4567870451),
FN_DECIMAL(-0.7349133547),
FN_DECIMAL(0.399304489),
FN_DECIMAL(-0.7474927672),
FN_DECIMAL(0.02589419753),
FN_DECIMAL(0.783915821),
FN_DECIMAL(0.6138668752),
FN_DECIMAL(0.4276376047),
FN_DECIMAL(-0.4347886353),
FN_DECIMAL(0.02947841302),
FN_DECIMAL(-0.833742746),
FN_DECIMAL(0.3817221742),
FN_DECIMAL(-0.8743368359),
FN_DECIMAL(-0.3823443796),
FN_DECIMAL(-0.6829243811),
FN_DECIMAL(-0.3681903049),
FN_DECIMAL(-0.367626833),
FN_DECIMAL(-0.434583373),
FN_DECIMAL(0.235891995),
FN_DECIMAL(-0.6874880269),
FN_DECIMAL(-0.5115661773),
FN_DECIMAL(-0.5534962601),
FN_DECIMAL(0.5632777056),
FN_DECIMAL(0.686191532),
FN_DECIMAL(-0.05095871588),
FN_DECIMAL(-0.06865785057),
FN_DECIMAL(-0.5975288531),
FN_DECIMAL(-0.6429790056),
FN_DECIMAL(-0.3729361548),
FN_DECIMAL(0.2237917666),
FN_DECIMAL(0.6046773225),
FN_DECIMAL(-0.5041542295),
FN_DECIMAL(-0.03972191174),
FN_DECIMAL(0.7028828406),
FN_DECIMAL(-0.5560856498),
FN_DECIMAL(0.5898328456),
FN_DECIMAL(-0.9308076766),
FN_DECIMAL(0.4617069864),
FN_DECIMAL(0.3190983137),
FN_DECIMAL(0.9116567753),
FN_DECIMAL(-0.45029554),
FN_DECIMAL(0.3346334459),
FN_DECIMAL(0.8525005645),
FN_DECIMAL(0.2528483381),
FN_DECIMAL(-0.8306630147),
FN_DECIMAL(-0.6880390622),
FN_DECIMAL(0.7448684026),
FN_DECIMAL(-0.1963355843),
FN_DECIMAL(-0.5900257974),
FN_DECIMAL(0.9097057294),
FN_DECIMAL(-0.2509196808),
};
const FN_DECIMAL CELL_3D_Y[] = {
FN_DECIMAL(-0.6760585049),
FN_DECIMAL(-0.09136176499),
FN_DECIMAL(0.1681325679),
FN_DECIMAL(-0.6688468686),
FN_DECIMAL(-0.4822753902),
FN_DECIMAL(-0.7891068824),
FN_DECIMAL(-0.1877509944),
FN_DECIMAL(0.548470914),
FN_DECIMAL(-0.463339443),
FN_DECIMAL(-0.4050542082),
FN_DECIMAL(0.3218158513),
FN_DECIMAL(0.2546493823),
FN_DECIMAL(-0.3753271935),
FN_DECIMAL(0.4745384887),
FN_DECIMAL(0.481254652),
FN_DECIMAL(-0.8934416489),
FN_DECIMAL(-0.6737085076),
FN_DECIMAL(0.7469917228),
FN_DECIMAL(0.3826230411),
FN_DECIMAL(0.6751013678),
FN_DECIMAL(-0.7248119515),
FN_DECIMAL(-0.3224276742),
FN_DECIMAL(-0.02076190936),
FN_DECIMAL(-0.6404268166),
FN_DECIMAL(-0.5292028444),
FN_DECIMAL(0.7151414636),
FN_DECIMAL(-0.6144655059),
FN_DECIMAL(-0.369912124),
FN_DECIMAL(0.6942067212),
FN_DECIMAL(-0.4481558248),
FN_DECIMAL(-0.6366894559),
FN_DECIMAL(0.5956568471),
FN_DECIMAL(0.564274539),
FN_DECIMAL(0.7145584688),
FN_DECIMAL(0.6871918316),
FN_DECIMAL(0.5657918509),
FN_DECIMAL(-0.6275978114),
FN_DECIMAL(0.4146983062),
FN_DECIMAL(0.2638993789),
FN_DECIMAL(-0.792633138),
FN_DECIMAL(0.5706133514),
FN_DECIMAL(0.8606546462),
FN_DECIMAL(0.6490900316),
FN_DECIMAL(-0.8242699196),
FN_DECIMAL(0.6765819124),
FN_DECIMAL(0.1959534069),
FN_DECIMAL(-0.8426769757),
FN_DECIMAL(-0.5917672797),
FN_DECIMAL(0.7517364266),
FN_DECIMAL(0.03252559226),
FN_DECIMAL(0.0883617105),
FN_DECIMAL(0.4475064813),
FN_DECIMAL(-0.1418643552),
FN_DECIMAL(0.7343428473),
FN_DECIMAL(0.3870192548),
FN_DECIMAL(-0.7716703522),
FN_DECIMAL(0.4839898327),
FN_DECIMAL(0.7437439055),
FN_DECIMAL(-0.5989573348),
FN_DECIMAL(-0.8357068955),
FN_DECIMAL(0.6086049038),
FN_DECIMAL(0.9194627258),
FN_DECIMAL(0.4718297238),
FN_DECIMAL(-0.2650335884),
FN_DECIMAL(-0.6470352599),
FN_DECIMAL(-0.5555181303),
FN_DECIMAL(0.1222351235),
FN_DECIMAL(0.7802044684),
FN_DECIMAL(-0.8636947022),
FN_DECIMAL(-0.2341352163),
FN_DECIMAL(0.683030874),
FN_DECIMAL(-0.5005858287),
FN_DECIMAL(0.2334616211),
FN_DECIMAL(0.2576877608),
FN_DECIMAL(0.6666816727),
FN_DECIMAL(-0.7663996863),
FN_DECIMAL(0.794201982),
FN_DECIMAL(0.6189308788),
FN_DECIMAL(0.6071033261),
FN_DECIMAL(-0.4206058253),
FN_DECIMAL(-0.3957336915),
FN_DECIMAL(-0.8170257484),
FN_DECIMAL(-0.1043240417),
FN_DECIMAL(0.0002167596213),
FN_DECIMAL(0.1816339018),
FN_DECIMAL(-0.6838094939),
FN_DECIMAL(-0.2495341969),
FN_DECIMAL(-0.7116756954),
FN_DECIMAL(-0.03361673621),
FN_DECIMAL(-0.3350836431),
FN_DECIMAL(0.2137186039),
FN_DECIMAL(0.2557996786),
FN_DECIMAL(0.7490117093),
FN_DECIMAL(0.4942936549),
FN_DECIMAL(-0.352686853),
FN_DECIMAL(-0.3952445435),
FN_DECIMAL(-0.0459964767),
FN_DECIMAL(-0.7115787471),
FN_DECIMAL(0.08022899756),
FN_DECIMAL(0.5362268157),
FN_DECIMAL(-0.8258613686),
FN_DECIMAL(0.1114171723),
FN_DECIMAL(0.3882823051),
FN_DECIMAL(-0.7915404457),
FN_DECIMAL(0.3250957662),
FN_DECIMAL(0.6401346464),
FN_DECIMAL(-0.2662724517),
FN_DECIMAL(-0.6727907114),
FN_DECIMAL(-0.994730818),
FN_DECIMAL(-0.3596358977),
FN_DECIMAL(0.2344610069),
FN_DECIMAL(-0.6645215546),
FN_DECIMAL(-0.7107590611),
FN_DECIMAL(-0.4646617327),
FN_DECIMAL(0.6717191355),
FN_DECIMAL(0.5101893498),
FN_DECIMAL(0.1185768238),
FN_DECIMAL(0.236005093),
FN_DECIMAL(-0.7811024061),
FN_DECIMAL(0.5089325193),
FN_DECIMAL(0.6073187658),
FN_DECIMAL(-0.7930732557),
FN_DECIMAL(-0.6822767155),
FN_DECIMAL(0.3201532885),
FN_DECIMAL(0.7545302807),
FN_DECIMAL(0.1072664448),
FN_DECIMAL(0.6784033173),
FN_DECIMAL(-0.6595924967),
FN_DECIMAL(0.7276509498),
FN_DECIMAL(0.5586689436),
FN_DECIMAL(-0.6498636788),
FN_DECIMAL(0.6789333174),
FN_DECIMAL(0.7105966551),
FN_DECIMAL(-0.2872214155),
FN_DECIMAL(0.496746217),
FN_DECIMAL(-0.3880337977),
FN_DECIMAL(0.7324070604),
FN_DECIMAL(-0.9326634749),
FN_DECIMAL(-0.5867839255),
FN_DECIMAL(0.8003043651),
FN_DECIMAL(-0.1631882481),
FN_DECIMAL(-0.6796374681),
FN_DECIMAL(-0.8066678503),
FN_DECIMAL(0.4238177418),
FN_DECIMAL(0.7715863549),
FN_DECIMAL(0.5455367347),
FN_DECIMAL(-0.03205115397),
FN_DECIMAL(-0.6005545066),
FN_DECIMAL(-0.5423640002),
FN_DECIMAL(0.3569205906),
FN_DECIMAL(-0.582071752),
FN_DECIMAL(0.6407354361),
FN_DECIMAL(0.7777142984),
FN_DECIMAL(-0.09956428618),
FN_DECIMAL(0.1100002681),
FN_DECIMAL(0.8136349123),
FN_DECIMAL(0.2923431904),
FN_DECIMAL(0.9735794425),
FN_DECIMAL(0.8324974864),
FN_DECIMAL(-0.6179617717),
FN_DECIMAL(-0.9248386523),
FN_DECIMAL(-0.6448780771),
FN_DECIMAL(-0.5274402761),
FN_DECIMAL(-0.7862170565),
FN_DECIMAL(0.2682099744),
FN_DECIMAL(-0.5848777694),
FN_DECIMAL(-0.6364561467),
FN_DECIMAL(-0.7167402514),
FN_DECIMAL(-0.8677012494),
FN_DECIMAL(0.4205286707),
FN_DECIMAL(-0.7007832749),
FN_DECIMAL(0.243272451),
FN_DECIMAL(-0.1899846085),
FN_DECIMAL(-0.6146124977),
FN_DECIMAL(-0.8093357692),
FN_DECIMAL(-0.03545096987),
FN_DECIMAL(-0.7191590868),
FN_DECIMAL(0.7478645848),
FN_DECIMAL(0.3623517328),
FN_DECIMAL(0.8436992512),
FN_DECIMAL(-0.2445711729),
FN_DECIMAL(0.6897356637),
FN_DECIMAL(-0.1708070787),
FN_DECIMAL(0.4639272368),
FN_DECIMAL(-0.7917186656),
FN_DECIMAL(0.02980025428),
FN_DECIMAL(0.6334156172),
FN_DECIMAL(-0.9815544807),
FN_DECIMAL(-0.2307217304),
FN_DECIMAL(0.1080823318),
FN_DECIMAL(0.5167601798),
FN_DECIMAL(-0.845120016),
FN_DECIMAL(0.441572562),
FN_DECIMAL(0.5876789172),
FN_DECIMAL(-0.6365908737),
FN_DECIMAL(0.68350166),
FN_DECIMAL(0.5849723959),
FN_DECIMAL(0.1164114357),
FN_DECIMAL(-0.7379813884),
FN_DECIMAL(-0.9613237178),
FN_DECIMAL(-0.9071943084),
FN_DECIMAL(-0.7682111105),
FN_DECIMAL(0.639074459),
FN_DECIMAL(-0.619358298),
FN_DECIMAL(0.2807257131),
FN_DECIMAL(-0.01800868791),
FN_DECIMAL(0.3776607289),
FN_DECIMAL(0.7207567823),
FN_DECIMAL(0.5536661486),
FN_DECIMAL(-0.9974053117),
FN_DECIMAL(-0.02047200006),
FN_DECIMAL(-0.6739453804),
FN_DECIMAL(-0.5607471297),
FN_DECIMAL(0.8815553192),
FN_DECIMAL(0.8275977415),
FN_DECIMAL(0.3928902456),
FN_DECIMAL(0.550991396),
FN_DECIMAL(0.4247623676),
FN_DECIMAL(-0.3436948871),
FN_DECIMAL(-0.3653537677),
FN_DECIMAL(0.3181702902),
FN_DECIMAL(-0.6067173171),
FN_DECIMAL(-0.8984128477),
FN_DECIMAL(0.4220839766),
FN_DECIMAL(0.7238407199),
FN_DECIMAL(-0.7766913695),
FN_DECIMAL(0.6460037842),
FN_DECIMAL(0.2544775664),
FN_DECIMAL(0.6488840578),
FN_DECIMAL(0.805016833),
FN_DECIMAL(-0.9183807036),
FN_DECIMAL(0.4144046357),
FN_DECIMAL(0.270587208),
FN_DECIMAL(-0.8813684494),
FN_DECIMAL(0.6985971877),
FN_DECIMAL(-0.7795603017),
FN_DECIMAL(-0.8624480731),
FN_DECIMAL(0.5532697017),
FN_DECIMAL(0.711179521),
FN_DECIMAL(-0.7798160574),
FN_DECIMAL(0.5225859041),
FN_DECIMAL(0.1261859368),
FN_DECIMAL(0.3398033582),
FN_DECIMAL(-0.7472173667),
FN_DECIMAL(-0.4032647119),
FN_DECIMAL(-0.4246578154),
FN_DECIMAL(0.8481212377),
FN_DECIMAL(-0.2144838537),
FN_DECIMAL(0.3431714491),
FN_DECIMAL(0.5310188231),
FN_DECIMAL(0.6682978632),
FN_DECIMAL(0.3110433206),
FN_DECIMAL(0.9263293599),
FN_DECIMAL(-0.6155600569),
FN_DECIMAL(0.07169784399),
FN_DECIMAL(0.8985888773),
};
const FN_DECIMAL CELL_3D_Z[] = {
FN_DECIMAL(-0.6341391283),
FN_DECIMAL(-0.7207118346),
FN_DECIMAL(0.9597866014),
FN_DECIMAL(0.3237504235),
FN_DECIMAL(-0.7588642466),
FN_DECIMAL(-0.01782410481),
FN_DECIMAL(0.2515593809),
FN_DECIMAL(0.2207257205),
FN_DECIMAL(-0.8579541106),
FN_DECIMAL(0.3406410681),
FN_DECIMAL(0.7669470462),
FN_DECIMAL(-0.9431957648),
FN_DECIMAL(0.7676171537),
FN_DECIMAL(-0.6000491115),
FN_DECIMAL(-0.7062096948),
FN_DECIMAL(0.2550207115),
FN_DECIMAL(0.7347325213),
FN_DECIMAL(0.5163625202),
FN_DECIMAL(-0.5394270162),
FN_DECIMAL(0.3336656285),
FN_DECIMAL(-0.0638635111),
FN_DECIMAL(-0.6503195787),
FN_DECIMAL(0.3143356798),
FN_DECIMAL(-0.5039217245),
FN_DECIMAL(0.6605180464),
FN_DECIMAL(-0.6855479011),
FN_DECIMAL(-0.6693185756),
FN_DECIMAL(0.1832083647),
FN_DECIMAL(-0.5666258437),
FN_DECIMAL(0.3576482138),
FN_DECIMAL(-0.6571949095),
FN_DECIMAL(-0.7522101635),
FN_DECIMAL(-0.7238865886),
FN_DECIMAL(0.4538887323),
FN_DECIMAL(0.2467106257),
FN_DECIMAL(0.7274778869),
FN_DECIMAL(0.3151170655),
FN_DECIMAL(-0.8802293764),
FN_DECIMAL(-0.2167232729),
FN_DECIMAL(0.5854637865),
FN_DECIMAL(0.7019741052),
FN_DECIMAL(0.5091756071),
FN_DECIMAL(0.1973189533),
FN_DECIMAL(0.46743546),
FN_DECIMAL(0.05197599597),
FN_DECIMAL(0.088354718),
FN_DECIMAL(0.5380464843),
FN_DECIMAL(-0.6458224544),
FN_DECIMAL(-0.5045952393),
FN_DECIMAL(0.419347884),
FN_DECIMAL(0.8000823542),
FN_DECIMAL(-0.07445020656),
FN_DECIMAL(-0.6272881641),
FN_DECIMAL(-0.428020311),
FN_DECIMAL(-0.2747382083),
FN_DECIMAL(-0.08987283726),
FN_DECIMAL(0.8699098354),
FN_DECIMAL(0.4524761885),
FN_DECIMAL(-0.3274603257),
FN_DECIMAL(0.4882262167),
FN_DECIMAL(-0.7189983256),
FN_DECIMAL(0.1746079907),
FN_DECIMAL(0.0751772698),
FN_DECIMAL(-0.6152927202),
FN_DECIMAL(0.4998474673),
FN_DECIMAL(-0.6979677227),
FN_DECIMAL(0.7568667263),
FN_DECIMAL(-0.6152612058),
FN_DECIMAL(0.06447140991),
FN_DECIMAL(-0.8155744872),
FN_DECIMAL(-0.5229602449),
FN_DECIMAL(0.6567836838),
FN_DECIMAL(-0.4799905631),
FN_DECIMAL(0.03153534591),
FN_DECIMAL(0.4724992466),
FN_DECIMAL(-0.3026458097),
FN_DECIMAL(-0.2191225827),
FN_DECIMAL(-0.620692287),
FN_DECIMAL(0.3107552588),
FN_DECIMAL(0.8235670294),
FN_DECIMAL(0.6474915988),
FN_DECIMAL(-0.5047637941),
FN_DECIMAL(0.4911488878),
FN_DECIMAL(-0.2307138167),
FN_DECIMAL(-0.5216800015),
FN_DECIMAL(0.6789305939),
FN_DECIMAL(0.9403734863),
FN_DECIMAL(0.702390397),
FN_DECIMAL(0.7347584625),
FN_DECIMAL(0.6779567958),
FN_DECIMAL(0.9765635805),
FN_DECIMAL(-0.9436177661),
FN_DECIMAL(-0.358465925),
FN_DECIMAL(-0.3058706624),
FN_DECIMAL(0.5533414464),
FN_DECIMAL(-0.8838306897),
FN_DECIMAL(0.04496841812),
FN_DECIMAL(0.01687374963),
FN_DECIMAL(-0.9927133148),
FN_DECIMAL(-0.211752318),
FN_DECIMAL(0.3732015249),
FN_DECIMAL(0.9632990593),
FN_DECIMAL(-0.07682417004),
FN_DECIMAL(-0.07232213047),
FN_DECIMAL(0.4733721775),
FN_DECIMAL(0.2579229713),
FN_DECIMAL(0.7995216286),
FN_DECIMAL(0.3928189967),
FN_DECIMAL(0.04107517667),
FN_DECIMAL(0.1534542912),
FN_DECIMAL(0.6468965045),
FN_DECIMAL(0.4030684878),
FN_DECIMAL(-0.5617300988),
FN_DECIMAL(-0.885463029),
FN_DECIMAL(0.693729985),
FN_DECIMAL(-0.5736527866),
FN_DECIMAL(-0.9911905409),
FN_DECIMAL(-0.66451538),
FN_DECIMAL(0.2028855685),
FN_DECIMAL(0.8019541421),
FN_DECIMAL(-0.3903877149),
FN_DECIMAL(-0.4888495114),
FN_DECIMAL(-0.2753714057),
FN_DECIMAL(-0.8915202143),
FN_DECIMAL(0.5273119089),
FN_DECIMAL(0.9363714773),
FN_DECIMAL(-0.5212228249),
FN_DECIMAL(-0.31642672),
FN_DECIMAL(0.2409440761),
FN_DECIMAL(-0.703776404),
FN_DECIMAL(-0.6996810411),
FN_DECIMAL(-0.7058714505),
FN_DECIMAL(-0.3650566783),
FN_DECIMAL(0.1064744278),
FN_DECIMAL(0.7985729102),
FN_DECIMAL(0.424680257),
FN_DECIMAL(-0.6384535592),
FN_DECIMAL(0.1540161646),
FN_DECIMAL(-0.07702731943),
FN_DECIMAL(-0.5627789132),
FN_DECIMAL(-0.7667919169),
FN_DECIMAL(-0.509815999),
FN_DECIMAL(0.4590525092),
FN_DECIMAL(0.1552595611),
FN_DECIMAL(0.345402042),
FN_DECIMAL(0.7537656024),
FN_DECIMAL(0.7906259247),
FN_DECIMAL(-0.6218493452),
FN_DECIMAL(0.02979350071),
FN_DECIMAL(-0.1337893489),
FN_DECIMAL(-0.1483818606),
FN_DECIMAL(0.549965562),
FN_DECIMAL(0.01882482408),
FN_DECIMAL(-0.7833783002),
FN_DECIMAL(0.4702855809),
FN_DECIMAL(0.2435827372),
FN_DECIMAL(0.2978428332),
FN_DECIMAL(0.2256499906),
FN_DECIMAL(0.4885036897),
FN_DECIMAL(0.5312962584),
FN_DECIMAL(0.05401156992),
FN_DECIMAL(0.1749922158),
FN_DECIMAL(-0.7352273018),
FN_DECIMAL(0.6058980284),
FN_DECIMAL(0.4416079111),
FN_DECIMAL(0.4417378638),
FN_DECIMAL(0.5455879807),
FN_DECIMAL(-0.6681295324),
FN_DECIMAL(0.1973431441),
FN_DECIMAL(0.4053292055),
FN_DECIMAL(0.2220375492),
FN_DECIMAL(0.2957118467),
FN_DECIMAL(0.6910913512),
FN_DECIMAL(0.5940890106),
FN_DECIMAL(-0.2014135283),
FN_DECIMAL(-0.9172588213),
FN_DECIMAL(-0.4254361401),
FN_DECIMAL(-0.6146586825),
FN_DECIMAL(-0.7996193253),
FN_DECIMAL(-0.3716777111),
FN_DECIMAL(-0.9448876842),
FN_DECIMAL(-0.2620349924),
FN_DECIMAL(0.9615995749),
FN_DECIMAL(-0.4679683524),
FN_DECIMAL(0.3905937144),
FN_DECIMAL(0.613593722),
FN_DECIMAL(0.1422937358),
FN_DECIMAL(0.1908754211),
FN_DECIMAL(0.8189704912),
FN_DECIMAL(-0.7300408736),
FN_DECIMAL(-0.4108776451),
FN_DECIMAL(-0.5319834504),
FN_DECIMAL(-0.8970265651),
FN_DECIMAL(-0.5386359045),
FN_DECIMAL(0.4082255906),
FN_DECIMAL(0.7245356676),
FN_DECIMAL(0.5239080873),
FN_DECIMAL(-0.8937552226),
FN_DECIMAL(-0.553637673),
FN_DECIMAL(0.2354455182),
FN_DECIMAL(-0.0860293075),
FN_DECIMAL(-0.1399373318),
FN_DECIMAL(-0.4666323327),
FN_DECIMAL(0.5560157407),
FN_DECIMAL(0.1772619533),
FN_DECIMAL(-0.8893937725),
FN_DECIMAL(-0.5632714576),
FN_DECIMAL(-0.5666264959),
FN_DECIMAL(-0.3670263736),
FN_DECIMAL(-0.06717242579),
FN_DECIMAL(0.6205295181),
FN_DECIMAL(-0.4110536264),
FN_DECIMAL(0.7090054553),
FN_DECIMAL(0.183899597),
FN_DECIMAL(-0.5605470555),
FN_DECIMAL(0.3879565548),
FN_DECIMAL(0.7420893903),
FN_DECIMAL(-0.2347595118),
FN_DECIMAL(-0.8577217497),
FN_DECIMAL(0.6325590203),
FN_DECIMAL(-0.8736152276),
FN_DECIMAL(0.7048011129),
FN_DECIMAL(-0.06317948268),
FN_DECIMAL(0.8753285574),
FN_DECIMAL(-0.05843650473),
FN_DECIMAL(-0.3674922622),
FN_DECIMAL(-0.5256624401),
FN_DECIMAL(0.7861039337),
FN_DECIMAL(0.3287714416),
FN_DECIMAL(0.5910593099),
FN_DECIMAL(-0.3896960134),
FN_DECIMAL(0.6864605361),
FN_DECIMAL(0.7164918431),
FN_DECIMAL(-0.290014277),
FN_DECIMAL(-0.6796169617),
FN_DECIMAL(0.1632515592),
FN_DECIMAL(0.04485347486),
FN_DECIMAL(0.8320545697),
FN_DECIMAL(0.01339408056),
FN_DECIMAL(-0.2874989857),
FN_DECIMAL(0.615630723),
FN_DECIMAL(0.3430367014),
FN_DECIMAL(0.8193658136),
FN_DECIMAL(-0.5829600957),
FN_DECIMAL(0.07911697781),
FN_DECIMAL(0.7854296063),
FN_DECIMAL(-0.4107442306),
FN_DECIMAL(0.4766964066),
FN_DECIMAL(-0.9045999527),
FN_DECIMAL(-0.1673856787),
FN_DECIMAL(0.2828077348),
FN_DECIMAL(-0.5902737632),
FN_DECIMAL(-0.321506229),
FN_DECIMAL(-0.5224513133),
FN_DECIMAL(-0.4090169985),
FN_DECIMAL(-0.3599685311),
};
static int FastFloor(FN_DECIMAL f) {
return (f >= 0 ? (int)f : (int)f - 1);
}
static int FastRound(FN_DECIMAL f) {
return (f >= 0) ? (int)(f + FN_DECIMAL(0.5)) : (int)(f - FN_DECIMAL(0.5));
}
//static int FastAbs(int i) { return abs(i); }
static FN_DECIMAL FastAbs(FN_DECIMAL f) {
return fabs(f);
}
static FN_DECIMAL Lerp(FN_DECIMAL a, FN_DECIMAL b, FN_DECIMAL t) {
return a + t * (b - a);
}
static FN_DECIMAL InterpHermiteFunc(FN_DECIMAL t) {
return t * t * (3 - 2 * t);
}
static FN_DECIMAL InterpQuinticFunc(FN_DECIMAL t) {
return t * t * t * (t * (t * 6 - 15) + 10);
}
static FN_DECIMAL CubicLerp(FN_DECIMAL a, FN_DECIMAL b, FN_DECIMAL c, FN_DECIMAL d, FN_DECIMAL t) {
FN_DECIMAL p = (d - c) - (a - b);
return t * t * t * p + t * t * ((a - b) - p) + t * (c - a) + b;
}
void FastNoise::SetSeed(int seed) {
m_seed = seed;
std::mt19937_64 gen(seed);
for (int i = 0; i < 256; i++)
m_perm[i] = i;
for (int j = 0; j < 256; j++) {
int rng = (int)(gen() % (256 - j));
int k = rng + j;
int l = m_perm[j];
m_perm[j] = m_perm[j + 256] = m_perm[k];
m_perm[k] = l;
m_perm12[j] = m_perm12[j + 256] = m_perm[j] % 12;
}
}
void FastNoise::CalculateFractalBounding() {
FN_DECIMAL amp = m_gain;
FN_DECIMAL ampFractal = 1.0f;
for (int i = 1; i < m_octaves; i++) {
ampFractal += amp;
amp *= m_gain;
}
m_fractalBounding = 1.0f / ampFractal;
}
void FastNoise::SetCellularDistance2Indices(int cellularDistanceIndex0, int cellularDistanceIndex1) {
m_cellularDistanceIndex0 = std::min(cellularDistanceIndex0, cellularDistanceIndex1);
m_cellularDistanceIndex1 = std::max(cellularDistanceIndex0, cellularDistanceIndex1);
m_cellularDistanceIndex0 = std::min(std::max(m_cellularDistanceIndex0, 0), FN_CELLULAR_INDEX_MAX);
m_cellularDistanceIndex1 = std::min(std::max(m_cellularDistanceIndex1, 0), FN_CELLULAR_INDEX_MAX);
}
void FastNoise::GetCellularDistance2Indices(int &cellularDistanceIndex0, int &cellularDistanceIndex1) const {
cellularDistanceIndex0 = m_cellularDistanceIndex0;
cellularDistanceIndex1 = m_cellularDistanceIndex1;
}
unsigned char FastNoise::Index2D_12(unsigned char offset, int x, int y) const {
return m_perm12[(x & 0xff) + m_perm[(y & 0xff) + offset]];
}
unsigned char FastNoise::Index3D_12(unsigned char offset, int x, int y, int z) const {
return m_perm12[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + offset]]];
}
unsigned char FastNoise::Index4D_32(unsigned char offset, int x, int y, int z, int w) const {
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + m_perm[(w & 0xff) + offset]]]] & 31;
}
unsigned char FastNoise::Index2D_256(unsigned char offset, int x, int y) const {
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + offset]];
}
unsigned char FastNoise::Index3D_256(unsigned char offset, int x, int y, int z) const {
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + offset]]];
}
unsigned char FastNoise::Index4D_256(unsigned char offset, int x, int y, int z, int w) const {
return m_perm[(x & 0xff) + m_perm[(y & 0xff) + m_perm[(z & 0xff) + m_perm[(w & 0xff) + offset]]]];
}
// Hashing
#define X_PRIME 1619
#define Y_PRIME 31337
#define Z_PRIME 6971
#define W_PRIME 1013
static FN_DECIMAL ValCoord2D(int seed, int x, int y) {
int n = seed;
n ^= X_PRIME * x;
n ^= Y_PRIME * y;
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
}
static FN_DECIMAL ValCoord3D(int seed, int x, int y, int z) {
int n = seed;
n ^= X_PRIME * x;
n ^= Y_PRIME * y;
n ^= Z_PRIME * z;
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
}
static FN_DECIMAL ValCoord4D(int seed, int x, int y, int z, int w) {
int n = seed;
n ^= X_PRIME * x;
n ^= Y_PRIME * y;
n ^= Z_PRIME * z;
n ^= W_PRIME * w;
return (n * n * n * 60493) / FN_DECIMAL(2147483648);
}
FN_DECIMAL FastNoise::ValCoord2DFast(unsigned char offset, int x, int y) const {
return VAL_LUT[Index2D_256(offset, x, y)];
}
FN_DECIMAL FastNoise::ValCoord3DFast(unsigned char offset, int x, int y, int z) const {
return VAL_LUT[Index3D_256(offset, x, y, z)];
}
FN_DECIMAL FastNoise::GradCoord2D(unsigned char offset, int x, int y, FN_DECIMAL xd, FN_DECIMAL yd) const {
unsigned char lutPos = Index2D_12(offset, x, y);
return xd * GRAD_X[lutPos] + yd * GRAD_Y[lutPos];
}
FN_DECIMAL FastNoise::GradCoord3D(unsigned char offset, int x, int y, int z, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd) const {
unsigned char lutPos = Index3D_12(offset, x, y, z);
return xd * GRAD_X[lutPos] + yd * GRAD_Y[lutPos] + zd * GRAD_Z[lutPos];
}
FN_DECIMAL FastNoise::GradCoord4D(unsigned char offset, int x, int y, int z, int w, FN_DECIMAL xd, FN_DECIMAL yd, FN_DECIMAL zd, FN_DECIMAL wd) const {
unsigned char lutPos = Index4D_32(offset, x, y, z, w) << 2;
return xd * GRAD_4D[lutPos] + yd * GRAD_4D[lutPos + 1] + zd * GRAD_4D[lutPos + 2] + wd * GRAD_4D[lutPos + 3];
}
FN_DECIMAL FastNoise::GetNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
x *= m_frequency;
y *= m_frequency;
z *= m_frequency;
switch (m_noiseType) {
case Value:
return SingleValue(0, x, y, z);
case ValueFractal:
switch (m_fractalType) {
case FBM:
return SingleValueFractalFBM(x, y, z);
case Billow:
return SingleValueFractalBillow(x, y, z);
case RigidMulti:
return SingleValueFractalRigidMulti(x, y, z);
default:
return 0;
}
case Perlin:
return SinglePerlin(0, x, y, z);
case PerlinFractal:
switch (m_fractalType) {
case FBM:
return SinglePerlinFractalFBM(x, y, z);
case Billow:
return SinglePerlinFractalBillow(x, y, z);
case RigidMulti:
return SinglePerlinFractalRigidMulti(x, y, z);
default:
return 0;
}
case Simplex:
return SingleSimplex(0, x, y, z);
case SimplexFractal:
switch (m_fractalType) {
case FBM:
return SingleSimplexFractalFBM(x, y, z);
case Billow:
return SingleSimplexFractalBillow(x, y, z);
case RigidMulti:
return SingleSimplexFractalRigidMulti(x, y, z);
default:
return 0;
}
case Cellular:
switch (m_cellularReturnType) {
case CellValue:
case NoiseLookup:
case Distance:
return SingleCellular(x, y, z);
default:
return SingleCellular2Edge(x, y, z);
}
case WhiteNoise:
return GetWhiteNoise(x, y, z);
case Cubic:
return SingleCubic(0, x, y, z);
case CubicFractal:
switch (m_fractalType) {
case FBM:
return SingleCubicFractalFBM(x, y, z);
case Billow:
return SingleCubicFractalBillow(x, y, z);
case RigidMulti:
return SingleCubicFractalRigidMulti(x, y, z);
}
default:
return 0;
}
}
FN_DECIMAL FastNoise::GetNoise(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
switch (m_noiseType) {
case Value:
return SingleValue(0, x, y);
case ValueFractal:
switch (m_fractalType) {
case FBM:
return SingleValueFractalFBM(x, y);
case Billow:
return SingleValueFractalBillow(x, y);
case RigidMulti:
return SingleValueFractalRigidMulti(x, y);
}
case Perlin:
return SinglePerlin(0, x, y);
case PerlinFractal:
switch (m_fractalType) {
case FBM:
return SinglePerlinFractalFBM(x, y);
case Billow:
return SinglePerlinFractalBillow(x, y);
case RigidMulti:
return SinglePerlinFractalRigidMulti(x, y);
}
case Simplex:
return SingleSimplex(0, x, y);
case SimplexFractal:
switch (m_fractalType) {
case FBM:
return SingleSimplexFractalFBM(x, y);
case Billow:
return SingleSimplexFractalBillow(x, y);
case RigidMulti:
return SingleSimplexFractalRigidMulti(x, y);
}
case Cellular:
switch (m_cellularReturnType) {
case CellValue:
case NoiseLookup:
case Distance:
return SingleCellular(x, y);
default:
return SingleCellular2Edge(x, y);
}
case WhiteNoise:
return GetWhiteNoise(x, y);
case Cubic:
return SingleCubic(0, x, y);
case CubicFractal:
switch (m_fractalType) {
case FBM:
return SingleCubicFractalFBM(x, y);
case Billow:
return SingleCubicFractalBillow(x, y);
case RigidMulti:
return SingleCubicFractalRigidMulti(x, y);
}
}
return 0;
}
// White Noise
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const {
int32_t *xx = reinterpret_cast<int32_t *>(&x);
int32_t *yy = reinterpret_cast<int32_t *>(&y);
int32_t *zz = reinterpret_cast<int32_t *>(&z);
int32_t *ww = reinterpret_cast<int32_t *>(&w);
return ValCoord4D(m_seed,
*xx ^ (*xx >> 16),
*yy ^ (*yy >> 16),
*zz ^ (*zz >> 16),
*ww ^ (*ww >> 16));
}
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
int32_t *xx = reinterpret_cast<int32_t *>(&x);
int32_t *yy = reinterpret_cast<int32_t *>(&y);
int32_t *zz = reinterpret_cast<int32_t *>(&z);
return ValCoord3D(m_seed,
*xx ^ (*xx >> 16),
*yy ^ (*yy >> 16),
*zz ^ (*zz >> 16));
}
FN_DECIMAL FastNoise::GetWhiteNoise(FN_DECIMAL x, FN_DECIMAL y) const {
int32_t *xx = reinterpret_cast<int32_t *>(&x);
int32_t *yy = reinterpret_cast<int32_t *>(&y);
return ValCoord2D(m_seed,
*xx ^ (*xx >> 16),
*yy ^ (*yy >> 16));
}
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y, int z, int w) const {
return ValCoord4D(m_seed, x, y, z, w);
}
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y, int z) const {
return ValCoord3D(m_seed, x, y, z);
}
FN_DECIMAL FastNoise::GetWhiteNoiseInt(int x, int y) const {
return ValCoord2D(m_seed, x, y);
}
// Value Noise
FN_DECIMAL FastNoise::GetValueFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
x *= m_frequency;
y *= m_frequency;
z *= m_frequency;
switch (m_fractalType) {
case FBM:
return SingleValueFractalFBM(x, y, z);
case Billow:
return SingleValueFractalBillow(x, y, z);
case RigidMulti:
return SingleValueFractalRigidMulti(x, y, z);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = SingleValue(m_perm[0], x, y, z);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += SingleValue(m_perm[i], x, y, z) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = FastAbs(SingleValue(m_perm[0], x, y, z)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SingleValue(m_perm[i], x, y, z)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = 1 - FastAbs(SingleValue(m_perm[0], x, y, z));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SingleValue(m_perm[i], x, y, z))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetValue(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
return SingleValue(0, x * m_frequency, y * m_frequency, z * m_frequency);
}
FN_DECIMAL FastNoise::SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
int x0 = FastFloor(x);
int y0 = FastFloor(y);
int z0 = FastFloor(z);
int x1 = x0 + 1;
int y1 = y0 + 1;
int z1 = z0 + 1;
FN_DECIMAL xs, ys, zs;
switch (m_interp) {
default:
case Linear:
xs = x - (FN_DECIMAL)x0;
ys = y - (FN_DECIMAL)y0;
zs = z - (FN_DECIMAL)z0;
break;
case Hermite:
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
zs = InterpHermiteFunc(z - (FN_DECIMAL)z0);
break;
case Quintic:
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
zs = InterpQuinticFunc(z - (FN_DECIMAL)z0);
break;
}
FN_DECIMAL xf00 = Lerp(ValCoord3DFast(offset, x0, y0, z0), ValCoord3DFast(offset, x1, y0, z0), xs);
FN_DECIMAL xf10 = Lerp(ValCoord3DFast(offset, x0, y1, z0), ValCoord3DFast(offset, x1, y1, z0), xs);
FN_DECIMAL xf01 = Lerp(ValCoord3DFast(offset, x0, y0, z1), ValCoord3DFast(offset, x1, y0, z1), xs);
FN_DECIMAL xf11 = Lerp(ValCoord3DFast(offset, x0, y1, z1), ValCoord3DFast(offset, x1, y1, z1), xs);
FN_DECIMAL yf0 = Lerp(xf00, xf10, ys);
FN_DECIMAL yf1 = Lerp(xf01, xf11, ys);
return Lerp(yf0, yf1, zs);
}
FN_DECIMAL FastNoise::GetValueFractal(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
switch (m_fractalType) {
case FBM:
return SingleValueFractalFBM(x, y);
case Billow:
return SingleValueFractalBillow(x, y);
case RigidMulti:
return SingleValueFractalRigidMulti(x, y);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleValueFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = SingleValue(m_perm[0], x, y);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += SingleValue(m_perm[i], x, y) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleValueFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = FastAbs(SingleValue(m_perm[0], x, y)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SingleValue(m_perm[i], x, y)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleValueFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = 1 - FastAbs(SingleValue(m_perm[0], x, y));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SingleValue(m_perm[i], x, y))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetValue(FN_DECIMAL x, FN_DECIMAL y) const {
return SingleValue(0, x * m_frequency, y * m_frequency);
}
FN_DECIMAL FastNoise::SingleValue(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
int x0 = FastFloor(x);
int y0 = FastFloor(y);
int x1 = x0 + 1;
int y1 = y0 + 1;
FN_DECIMAL xs, ys;
switch (m_interp) {
default:
case Linear:
xs = x - (FN_DECIMAL)x0;
ys = y - (FN_DECIMAL)y0;
break;
case Hermite:
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
break;
case Quintic:
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
break;
}
FN_DECIMAL xf0 = Lerp(ValCoord2DFast(offset, x0, y0), ValCoord2DFast(offset, x1, y0), xs);
FN_DECIMAL xf1 = Lerp(ValCoord2DFast(offset, x0, y1), ValCoord2DFast(offset, x1, y1), xs);
return Lerp(xf0, xf1, ys);
}
// Perlin Noise
FN_DECIMAL FastNoise::GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
x *= m_frequency;
y *= m_frequency;
z *= m_frequency;
switch (m_fractalType) {
case FBM:
return SinglePerlinFractalFBM(x, y, z);
case Billow:
return SinglePerlinFractalBillow(x, y, z);
case RigidMulti:
return SinglePerlinFractalRigidMulti(x, y, z);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = SinglePerlin(m_perm[0], x, y, z);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += SinglePerlin(m_perm[i], x, y, z) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = FastAbs(SinglePerlin(m_perm[0], x, y, z)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SinglePerlin(m_perm[i], x, y, z)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = 1 - FastAbs(SinglePerlin(m_perm[0], x, y, z));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SinglePerlin(m_perm[i], x, y, z))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetPerlin(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
return SinglePerlin(0, x * m_frequency, y * m_frequency, z * m_frequency);
}
FN_DECIMAL FastNoise::SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
int x0 = FastFloor(x);
int y0 = FastFloor(y);
int z0 = FastFloor(z);
int x1 = x0 + 1;
int y1 = y0 + 1;
int z1 = z0 + 1;
FN_DECIMAL xs, ys, zs;
switch (m_interp) {
default:
case Linear:
xs = x - (FN_DECIMAL)x0;
ys = y - (FN_DECIMAL)y0;
zs = z - (FN_DECIMAL)z0;
break;
case Hermite:
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
zs = InterpHermiteFunc(z - (FN_DECIMAL)z0);
break;
case Quintic:
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
zs = InterpQuinticFunc(z - (FN_DECIMAL)z0);
break;
}
FN_DECIMAL xd0 = x - (FN_DECIMAL)x0;
FN_DECIMAL yd0 = y - (FN_DECIMAL)y0;
FN_DECIMAL zd0 = z - (FN_DECIMAL)z0;
FN_DECIMAL xd1 = xd0 - 1;
FN_DECIMAL yd1 = yd0 - 1;
FN_DECIMAL zd1 = zd0 - 1;
FN_DECIMAL xf00 = Lerp(GradCoord3D(offset, x0, y0, z0, xd0, yd0, zd0), GradCoord3D(offset, x1, y0, z0, xd1, yd0, zd0), xs);
FN_DECIMAL xf10 = Lerp(GradCoord3D(offset, x0, y1, z0, xd0, yd1, zd0), GradCoord3D(offset, x1, y1, z0, xd1, yd1, zd0), xs);
FN_DECIMAL xf01 = Lerp(GradCoord3D(offset, x0, y0, z1, xd0, yd0, zd1), GradCoord3D(offset, x1, y0, z1, xd1, yd0, zd1), xs);
FN_DECIMAL xf11 = Lerp(GradCoord3D(offset, x0, y1, z1, xd0, yd1, zd1), GradCoord3D(offset, x1, y1, z1, xd1, yd1, zd1), xs);
FN_DECIMAL yf0 = Lerp(xf00, xf10, ys);
FN_DECIMAL yf1 = Lerp(xf01, xf11, ys);
return Lerp(yf0, yf1, zs);
}
FN_DECIMAL FastNoise::GetPerlinFractal(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
switch (m_fractalType) {
case FBM:
return SinglePerlinFractalFBM(x, y);
case Billow:
return SinglePerlinFractalBillow(x, y);
case RigidMulti:
return SinglePerlinFractalRigidMulti(x, y);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SinglePerlinFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = SinglePerlin(m_perm[0], x, y);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += SinglePerlin(m_perm[i], x, y) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SinglePerlinFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = FastAbs(SinglePerlin(m_perm[0], x, y)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SinglePerlin(m_perm[i], x, y)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SinglePerlinFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = 1 - FastAbs(SinglePerlin(m_perm[0], x, y));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SinglePerlin(m_perm[i], x, y))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetPerlin(FN_DECIMAL x, FN_DECIMAL y) const {
return SinglePerlin(0, x * m_frequency, y * m_frequency);
}
FN_DECIMAL FastNoise::SinglePerlin(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
int x0 = FastFloor(x);
int y0 = FastFloor(y);
int x1 = x0 + 1;
int y1 = y0 + 1;
FN_DECIMAL xs, ys;
switch (m_interp) {
default:
case Linear:
xs = x - (FN_DECIMAL)x0;
ys = y - (FN_DECIMAL)y0;
break;
case Hermite:
xs = InterpHermiteFunc(x - (FN_DECIMAL)x0);
ys = InterpHermiteFunc(y - (FN_DECIMAL)y0);
break;
case Quintic:
xs = InterpQuinticFunc(x - (FN_DECIMAL)x0);
ys = InterpQuinticFunc(y - (FN_DECIMAL)y0);
break;
}
FN_DECIMAL xd0 = x - (FN_DECIMAL)x0;
FN_DECIMAL yd0 = y - (FN_DECIMAL)y0;
FN_DECIMAL xd1 = xd0 - 1;
FN_DECIMAL yd1 = yd0 - 1;
FN_DECIMAL xf0 = Lerp(GradCoord2D(offset, x0, y0, xd0, yd0), GradCoord2D(offset, x1, y0, xd1, yd0), xs);
FN_DECIMAL xf1 = Lerp(GradCoord2D(offset, x0, y1, xd0, yd1), GradCoord2D(offset, x1, y1, xd1, yd1), xs);
return Lerp(xf0, xf1, ys);
}
// Simplex Noise
FN_DECIMAL FastNoise::GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
x *= m_frequency;
y *= m_frequency;
z *= m_frequency;
switch (m_fractalType) {
case FBM:
return SingleSimplexFractalFBM(x, y, z);
case Billow:
return SingleSimplexFractalBillow(x, y, z);
case RigidMulti:
return SingleSimplexFractalRigidMulti(x, y, z);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y, z);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += SingleSimplex(m_perm[i], x, y, z) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = FastAbs(SingleSimplex(m_perm[0], x, y, z)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SingleSimplex(m_perm[i], x, y, z)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = 1 - FastAbs(SingleSimplex(m_perm[0], x, y, z));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SingleSimplex(m_perm[i], x, y, z))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
return SingleSimplex(0, x * m_frequency, y * m_frequency, z * m_frequency);
}
static const FN_DECIMAL F3 = 1 / FN_DECIMAL(3);
static const FN_DECIMAL G3 = 1 / FN_DECIMAL(6);
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL t = (x + y + z) * F3;
int i = FastFloor(x + t);
int j = FastFloor(y + t);
int k = FastFloor(z + t);
t = (i + j + k) * G3;
FN_DECIMAL X0 = i - t;
FN_DECIMAL Y0 = j - t;
FN_DECIMAL Z0 = k - t;
FN_DECIMAL x0 = x - X0;
FN_DECIMAL y0 = y - Y0;
FN_DECIMAL z0 = z - Z0;
int i1, j1, k1;
int i2, j2, k2;
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} else // x0 < z0
{
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
} else // x0 < y0
{
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} else // x0 >= z0
{
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
}
FN_DECIMAL x1 = x0 - i1 + G3;
FN_DECIMAL y1 = y0 - j1 + G3;
FN_DECIMAL z1 = z0 - k1 + G3;
FN_DECIMAL x2 = x0 - i2 + 2 * G3;
FN_DECIMAL y2 = y0 - j2 + 2 * G3;
FN_DECIMAL z2 = z0 - k2 + 2 * G3;
FN_DECIMAL x3 = x0 - 1 + 3 * G3;
FN_DECIMAL y3 = y0 - 1 + 3 * G3;
FN_DECIMAL z3 = z0 - 1 + 3 * G3;
FN_DECIMAL n0, n1, n2, n3;
t = FN_DECIMAL(0.6) - x0 * x0 - y0 * y0 - z0 * z0;
if (t < 0)
n0 = 0;
else {
t *= t;
n0 = t * t * GradCoord3D(offset, i, j, k, x0, y0, z0);
}
t = FN_DECIMAL(0.6) - x1 * x1 - y1 * y1 - z1 * z1;
if (t < 0)
n1 = 0;
else {
t *= t;
n1 = t * t * GradCoord3D(offset, i + i1, j + j1, k + k1, x1, y1, z1);
}
t = FN_DECIMAL(0.6) - x2 * x2 - y2 * y2 - z2 * z2;
if (t < 0)
n2 = 0;
else {
t *= t;
n2 = t * t * GradCoord3D(offset, i + i2, j + j2, k + k2, x2, y2, z2);
}
t = FN_DECIMAL(0.6) - x3 * x3 - y3 * y3 - z3 * z3;
if (t < 0)
n3 = 0;
else {
t *= t;
n3 = t * t * GradCoord3D(offset, i + 1, j + 1, k + 1, x3, y3, z3);
}
return 32 * (n0 + n1 + n2 + n3);
}
FN_DECIMAL FastNoise::GetSimplexFractal(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
switch (m_fractalType) {
case FBM:
return SingleSimplexFractalFBM(x, y);
case Billow:
return SingleSimplexFractalBillow(x, y);
case RigidMulti:
return SingleSimplexFractalRigidMulti(x, y);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleSimplexFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += SingleSimplex(m_perm[i], x, y) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleSimplexFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = FastAbs(SingleSimplex(m_perm[0], x, y)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SingleSimplex(m_perm[i], x, y)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleSimplexFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = 1 - FastAbs(SingleSimplex(m_perm[0], x, y));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SingleSimplex(m_perm[i], x, y))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::SingleSimplexFractalBlend(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = SingleSimplex(m_perm[0], x, y);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum *= SingleSimplex(m_perm[i], x, y) * amp + 1;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y) const {
return SingleSimplex(0, x * m_frequency, y * m_frequency);
}
//static const FN_DECIMAL F2 = 1 / FN_DECIMAL(2);
//static const FN_DECIMAL G2 = 1 / FN_DECIMAL(4);
static const FN_DECIMAL SQRT3 = FN_DECIMAL(1.7320508075688772935274463415059);
static const FN_DECIMAL F2 = FN_DECIMAL(0.5) * (SQRT3 - FN_DECIMAL(1.0));
static const FN_DECIMAL G2 = (FN_DECIMAL(3.0) - SQRT3) / FN_DECIMAL(6.0);
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL t = (x + y) * F2;
int i = FastFloor(x + t);
int j = FastFloor(y + t);
t = (i + j) * G2;
FN_DECIMAL X0 = i - t;
FN_DECIMAL Y0 = j - t;
FN_DECIMAL x0 = x - X0;
FN_DECIMAL y0 = y - Y0;
int i1, j1;
if (x0 > y0) {
i1 = 1;
j1 = 0;
} else {
i1 = 0;
j1 = 1;
}
FN_DECIMAL x1 = x0 - (FN_DECIMAL)i1 + G2;
FN_DECIMAL y1 = y0 - (FN_DECIMAL)j1 + G2;
FN_DECIMAL x2 = x0 - 1 + 2 * G2;
FN_DECIMAL y2 = y0 - 1 + 2 * G2;
FN_DECIMAL n0, n1, n2;
t = FN_DECIMAL(0.5) - x0 * x0 - y0 * y0;
if (t < 0)
n0 = 0;
else {
t *= t;
n0 = t * t * GradCoord2D(offset, i, j, x0, y0);
}
t = FN_DECIMAL(0.5) - x1 * x1 - y1 * y1;
if (t < 0)
n1 = 0;
else {
t *= t;
n1 = t * t * GradCoord2D(offset, i + i1, j + j1, x1, y1);
}
t = FN_DECIMAL(0.5) - x2 * x2 - y2 * y2;
if (t < 0)
n2 = 0;
else {
t *= t;
n2 = t * t * GradCoord2D(offset, i + 1, j + 1, x2, y2);
}
return 70 * (n0 + n1 + n2);
}
FN_DECIMAL FastNoise::GetSimplex(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const {
return SingleSimplex(0, x * m_frequency, y * m_frequency, z * m_frequency, w * m_frequency);
}
static const unsigned char SIMPLEX_4D[] = {
0, 1, 2, 3, 0, 1, 3, 2, 0, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0,
0, 2, 1, 3, 0, 0, 0, 0, 0, 3, 1, 2, 0, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 0, 3, 0, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 1, 2, 3, 1, 0,
1, 0, 2, 3, 1, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 1, 0, 0, 0, 0, 2, 1, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 2, 3, 0, 2, 1, 0, 0, 0, 0, 3, 1, 2, 0,
2, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 0, 0, 3, 2, 0, 1, 3, 2, 1, 0
};
static const FN_DECIMAL F4 = (sqrt(FN_DECIMAL(5)) - 1) / 4;
static const FN_DECIMAL G4 = (5 - sqrt(FN_DECIMAL(5))) / 20;
FN_DECIMAL FastNoise::SingleSimplex(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z, FN_DECIMAL w) const {
FN_DECIMAL n0, n1, n2, n3, n4;
FN_DECIMAL t = (x + y + z + w) * F4;
int i = FastFloor(x + t);
int j = FastFloor(y + t);
int k = FastFloor(z + t);
int l = FastFloor(w + t);
t = (i + j + k + l) * G4;
FN_DECIMAL X0 = i - t;
FN_DECIMAL Y0 = j - t;
FN_DECIMAL Z0 = k - t;
FN_DECIMAL W0 = l - t;
FN_DECIMAL x0 = x - X0;
FN_DECIMAL y0 = y - Y0;
FN_DECIMAL z0 = z - Z0;
FN_DECIMAL w0 = w - W0;
int c = (x0 > y0) ? 32 : 0;
c += (x0 > z0) ? 16 : 0;
c += (y0 > z0) ? 8 : 0;
c += (x0 > w0) ? 4 : 0;
c += (y0 > w0) ? 2 : 0;
c += (z0 > w0) ? 1 : 0;
c <<= 2;
int i1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
int i2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
int i3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
int j1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
int j2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
int j3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
int k1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
int k2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
int k3 = SIMPLEX_4D[c++] >= 1 ? 1 : 0;
int l1 = SIMPLEX_4D[c] >= 3 ? 1 : 0;
int l2 = SIMPLEX_4D[c] >= 2 ? 1 : 0;
int l3 = SIMPLEX_4D[c] >= 1 ? 1 : 0;
FN_DECIMAL x1 = x0 - i1 + G4;
FN_DECIMAL y1 = y0 - j1 + G4;
FN_DECIMAL z1 = z0 - k1 + G4;
FN_DECIMAL w1 = w0 - l1 + G4;
FN_DECIMAL x2 = x0 - i2 + 2 * G4;
FN_DECIMAL y2 = y0 - j2 + 2 * G4;
FN_DECIMAL z2 = z0 - k2 + 2 * G4;
FN_DECIMAL w2 = w0 - l2 + 2 * G4;
FN_DECIMAL x3 = x0 - i3 + 3 * G4;
FN_DECIMAL y3 = y0 - j3 + 3 * G4;
FN_DECIMAL z3 = z0 - k3 + 3 * G4;
FN_DECIMAL w3 = w0 - l3 + 3 * G4;
FN_DECIMAL x4 = x0 - 1 + 4 * G4;
FN_DECIMAL y4 = y0 - 1 + 4 * G4;
FN_DECIMAL z4 = z0 - 1 + 4 * G4;
FN_DECIMAL w4 = w0 - 1 + 4 * G4;
t = FN_DECIMAL(0.6) - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t < 0)
n0 = 0;
else {
t *= t;
n0 = t * t * GradCoord4D(offset, i, j, k, l, x0, y0, z0, w0);
}
t = FN_DECIMAL(0.6) - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t < 0)
n1 = 0;
else {
t *= t;
n1 = t * t * GradCoord4D(offset, i + i1, j + j1, k + k1, l + l1, x1, y1, z1, w1);
}
t = FN_DECIMAL(0.6) - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t < 0)
n2 = 0;
else {
t *= t;
n2 = t * t * GradCoord4D(offset, i + i2, j + j2, k + k2, l + l2, x2, y2, z2, w2);
}
t = FN_DECIMAL(0.6) - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t < 0)
n3 = 0;
else {
t *= t;
n3 = t * t * GradCoord4D(offset, i + i3, j + j3, k + k3, l + l3, x3, y3, z3, w3);
}
t = FN_DECIMAL(0.6) - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t < 0)
n4 = 0;
else {
t *= t;
n4 = t * t * GradCoord4D(offset, i + 1, j + 1, k + 1, l + 1, x4, y4, z4, w4);
}
return 27 * (n0 + n1 + n2 + n3 + n4);
}
// Cubic Noise
FN_DECIMAL FastNoise::GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
x *= m_frequency;
y *= m_frequency;
z *= m_frequency;
switch (m_fractalType) {
case FBM:
return SingleCubicFractalFBM(x, y, z);
case Billow:
return SingleCubicFractalBillow(x, y, z);
case RigidMulti:
return SingleCubicFractalRigidMulti(x, y, z);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = SingleCubic(m_perm[0], x, y, z);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += SingleCubic(m_perm[i], x, y, z) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = FastAbs(SingleCubic(m_perm[0], x, y, z)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SingleCubic(m_perm[i], x, y, z)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
FN_DECIMAL sum = 1 - FastAbs(SingleCubic(m_perm[0], x, y, z));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
z *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SingleCubic(m_perm[i], x, y, z))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetCubic(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
return SingleCubic(0, x * m_frequency, y * m_frequency, z * m_frequency);
}
const FN_DECIMAL CUBIC_3D_BOUNDING = 1 / (FN_DECIMAL(1.5) * FN_DECIMAL(1.5) * FN_DECIMAL(1.5));
FN_DECIMAL FastNoise::SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
int x1 = FastFloor(x);
int y1 = FastFloor(y);
int z1 = FastFloor(z);
int x0 = x1 - 1;
int y0 = y1 - 1;
int z0 = z1 - 1;
int x2 = x1 + 1;
int y2 = y1 + 1;
int z2 = z1 + 1;
int x3 = x1 + 2;
int y3 = y1 + 2;
int z3 = z1 + 2;
FN_DECIMAL xs = x - (FN_DECIMAL)x1;
FN_DECIMAL ys = y - (FN_DECIMAL)y1;
FN_DECIMAL zs = z - (FN_DECIMAL)z1;
return CubicLerp(
CubicLerp(
CubicLerp(ValCoord3DFast(offset, x0, y0, z0), ValCoord3DFast(offset, x1, y0, z0), ValCoord3DFast(offset, x2, y0, z0), ValCoord3DFast(offset, x3, y0, z0), xs),
CubicLerp(ValCoord3DFast(offset, x0, y1, z0), ValCoord3DFast(offset, x1, y1, z0), ValCoord3DFast(offset, x2, y1, z0), ValCoord3DFast(offset, x3, y1, z0), xs),
CubicLerp(ValCoord3DFast(offset, x0, y2, z0), ValCoord3DFast(offset, x1, y2, z0), ValCoord3DFast(offset, x2, y2, z0), ValCoord3DFast(offset, x3, y2, z0), xs),
CubicLerp(ValCoord3DFast(offset, x0, y3, z0), ValCoord3DFast(offset, x1, y3, z0), ValCoord3DFast(offset, x2, y3, z0), ValCoord3DFast(offset, x3, y3, z0), xs),
ys),
CubicLerp(
CubicLerp(ValCoord3DFast(offset, x0, y0, z1), ValCoord3DFast(offset, x1, y0, z1), ValCoord3DFast(offset, x2, y0, z1), ValCoord3DFast(offset, x3, y0, z1), xs),
CubicLerp(ValCoord3DFast(offset, x0, y1, z1), ValCoord3DFast(offset, x1, y1, z1), ValCoord3DFast(offset, x2, y1, z1), ValCoord3DFast(offset, x3, y1, z1), xs),
CubicLerp(ValCoord3DFast(offset, x0, y2, z1), ValCoord3DFast(offset, x1, y2, z1), ValCoord3DFast(offset, x2, y2, z1), ValCoord3DFast(offset, x3, y2, z1), xs),
CubicLerp(ValCoord3DFast(offset, x0, y3, z1), ValCoord3DFast(offset, x1, y3, z1), ValCoord3DFast(offset, x2, y3, z1), ValCoord3DFast(offset, x3, y3, z1), xs),
ys),
CubicLerp(
CubicLerp(ValCoord3DFast(offset, x0, y0, z2), ValCoord3DFast(offset, x1, y0, z2), ValCoord3DFast(offset, x2, y0, z2), ValCoord3DFast(offset, x3, y0, z2), xs),
CubicLerp(ValCoord3DFast(offset, x0, y1, z2), ValCoord3DFast(offset, x1, y1, z2), ValCoord3DFast(offset, x2, y1, z2), ValCoord3DFast(offset, x3, y1, z2), xs),
CubicLerp(ValCoord3DFast(offset, x0, y2, z2), ValCoord3DFast(offset, x1, y2, z2), ValCoord3DFast(offset, x2, y2, z2), ValCoord3DFast(offset, x3, y2, z2), xs),
CubicLerp(ValCoord3DFast(offset, x0, y3, z2), ValCoord3DFast(offset, x1, y3, z2), ValCoord3DFast(offset, x2, y3, z2), ValCoord3DFast(offset, x3, y3, z2), xs),
ys),
CubicLerp(
CubicLerp(ValCoord3DFast(offset, x0, y0, z3), ValCoord3DFast(offset, x1, y0, z3), ValCoord3DFast(offset, x2, y0, z3), ValCoord3DFast(offset, x3, y0, z3), xs),
CubicLerp(ValCoord3DFast(offset, x0, y1, z3), ValCoord3DFast(offset, x1, y1, z3), ValCoord3DFast(offset, x2, y1, z3), ValCoord3DFast(offset, x3, y1, z3), xs),
CubicLerp(ValCoord3DFast(offset, x0, y2, z3), ValCoord3DFast(offset, x1, y2, z3), ValCoord3DFast(offset, x2, y2, z3), ValCoord3DFast(offset, x3, y2, z3), xs),
CubicLerp(ValCoord3DFast(offset, x0, y3, z3), ValCoord3DFast(offset, x1, y3, z3), ValCoord3DFast(offset, x2, y3, z3), ValCoord3DFast(offset, x3, y3, z3), xs),
ys),
zs) *
CUBIC_3D_BOUNDING;
}
FN_DECIMAL FastNoise::GetCubicFractal(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
switch (m_fractalType) {
case FBM:
return SingleCubicFractalFBM(x, y);
case Billow:
return SingleCubicFractalBillow(x, y);
case RigidMulti:
return SingleCubicFractalRigidMulti(x, y);
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleCubicFractalFBM(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = SingleCubic(m_perm[0], x, y);
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += SingleCubic(m_perm[i], x, y) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleCubicFractalBillow(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = FastAbs(SingleCubic(m_perm[0], x, y)) * 2 - 1;
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum += (FastAbs(SingleCubic(m_perm[i], x, y)) * 2 - 1) * amp;
}
return sum * m_fractalBounding;
}
FN_DECIMAL FastNoise::SingleCubicFractalRigidMulti(FN_DECIMAL x, FN_DECIMAL y) const {
FN_DECIMAL sum = 1 - FastAbs(SingleCubic(m_perm[0], x, y));
FN_DECIMAL amp = 1;
int i = 0;
while (++i < m_octaves) {
x *= m_lacunarity;
y *= m_lacunarity;
amp *= m_gain;
sum -= (1 - FastAbs(SingleCubic(m_perm[i], x, y))) * amp;
}
return sum;
}
FN_DECIMAL FastNoise::GetCubic(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
return SingleCubic(0, x, y);
}
const FN_DECIMAL CUBIC_2D_BOUNDING = 1 / (FN_DECIMAL(1.5) * FN_DECIMAL(1.5));
FN_DECIMAL FastNoise::SingleCubic(unsigned char offset, FN_DECIMAL x, FN_DECIMAL y) const {
int x1 = FastFloor(x);
int y1 = FastFloor(y);
int x0 = x1 - 1;
int y0 = y1 - 1;
int x2 = x1 + 1;
int y2 = y1 + 1;
int x3 = x1 + 2;
int y3 = y1 + 2;
FN_DECIMAL xs = x - (FN_DECIMAL)x1;
FN_DECIMAL ys = y - (FN_DECIMAL)y1;
return CubicLerp(
CubicLerp(ValCoord2DFast(offset, x0, y0), ValCoord2DFast(offset, x1, y0), ValCoord2DFast(offset, x2, y0), ValCoord2DFast(offset, x3, y0), xs),
CubicLerp(ValCoord2DFast(offset, x0, y1), ValCoord2DFast(offset, x1, y1), ValCoord2DFast(offset, x2, y1), ValCoord2DFast(offset, x3, y1), xs),
CubicLerp(ValCoord2DFast(offset, x0, y2), ValCoord2DFast(offset, x1, y2), ValCoord2DFast(offset, x2, y2), ValCoord2DFast(offset, x3, y2), xs),
CubicLerp(ValCoord2DFast(offset, x0, y3), ValCoord2DFast(offset, x1, y3), ValCoord2DFast(offset, x2, y3), ValCoord2DFast(offset, x3, y3), xs),
ys) *
CUBIC_2D_BOUNDING;
}
// Cellular Noise
FN_DECIMAL FastNoise::GetCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
x *= m_frequency;
y *= m_frequency;
z *= m_frequency;
switch (m_cellularReturnType) {
case CellValue:
case NoiseLookup:
case Distance:
return SingleCellular(x, y, z);
default:
return SingleCellular2Edge(x, y, z);
}
}
FN_DECIMAL FastNoise::SingleCellular(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
int xr = FastRound(x);
int yr = FastRound(y);
int zr = FastRound(z);
FN_DECIMAL distance = 999999;
int xc = 0;
int yc = 0;
int zc = 0;
switch (m_cellularDistanceFunction) {
case Euclidean:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
for (int zi = zr - 1; zi <= zr + 1; zi++) {
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
if (newDistance < distance) {
distance = newDistance;
xc = xi;
yc = yi;
zc = zi;
}
}
}
}
break;
case Manhattan:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
for (int zi = zr - 1; zi <= zr + 1; zi++) {
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ);
if (newDistance < distance) {
distance = newDistance;
xc = xi;
yc = yi;
zc = zi;
}
}
}
}
break;
case Natural:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
for (int zi = zr - 1; zi <= zr + 1; zi++) {
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ);
if (newDistance < distance) {
distance = newDistance;
xc = xi;
yc = yi;
zc = zi;
}
}
}
}
break;
default:
break;
}
unsigned char lutPos;
switch (m_cellularReturnType) {
case CellValue:
return ValCoord3D(m_seed, xc, yc, zc);
case NoiseLookup:
assert(m_cellularNoiseLookup);
lutPos = Index3D_256(0, xc, yc, zc);
return m_cellularNoiseLookup->GetNoise(xc + CELL_3D_X[lutPos] * m_cellularJitter, yc + CELL_3D_Y[lutPos] * m_cellularJitter, zc + CELL_3D_Z[lutPos] * m_cellularJitter);
case Distance:
return distance;
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y, FN_DECIMAL z) const {
int xr = FastRound(x);
int yr = FastRound(y);
int zr = FastRound(z);
FN_DECIMAL distance[FN_CELLULAR_INDEX_MAX + 1] = { 999999, 999999, 999999, 999999 };
switch (m_cellularDistanceFunction) {
case Euclidean:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
for (int zi = zr - 1; zi <= zr + 1; zi++) {
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
for (int i = m_cellularDistanceIndex1; i > 0; i--)
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
distance[0] = fmin(distance[0], newDistance);
}
}
}
break;
case Manhattan:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
for (int zi = zr - 1; zi <= zr + 1; zi++) {
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ);
for (int i = m_cellularDistanceIndex1; i > 0; i--)
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
distance[0] = fmin(distance[0], newDistance);
}
}
}
break;
case Natural:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
for (int zi = zr - 1; zi <= zr + 1; zi++) {
unsigned char lutPos = Index3D_256(0, xi, yi, zi);
FN_DECIMAL vecX = xi - x + CELL_3D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_3D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL vecZ = zi - z + CELL_3D_Z[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY) + FastAbs(vecZ)) + (vecX * vecX + vecY * vecY + vecZ * vecZ);
for (int i = m_cellularDistanceIndex1; i > 0; i--)
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
distance[0] = fmin(distance[0], newDistance);
}
}
}
break;
default:
break;
}
switch (m_cellularReturnType) {
case Distance2:
return distance[m_cellularDistanceIndex1];
case Distance2Add:
return distance[m_cellularDistanceIndex1] + distance[m_cellularDistanceIndex0];
case Distance2Sub:
return distance[m_cellularDistanceIndex1] - distance[m_cellularDistanceIndex0];
case Distance2Mul:
return distance[m_cellularDistanceIndex1] * distance[m_cellularDistanceIndex0];
case Distance2Div:
return distance[m_cellularDistanceIndex0] / distance[m_cellularDistanceIndex1];
default:
return 0;
}
}
FN_DECIMAL FastNoise::GetCellular(FN_DECIMAL x, FN_DECIMAL y) const {
x *= m_frequency;
y *= m_frequency;
switch (m_cellularReturnType) {
case CellValue:
case NoiseLookup:
case Distance:
return SingleCellular(x, y);
default:
return SingleCellular2Edge(x, y);
}
}
FN_DECIMAL FastNoise::SingleCellular(FN_DECIMAL x, FN_DECIMAL y) const {
int xr = FastRound(x);
int yr = FastRound(y);
FN_DECIMAL distance = 999999;
int xc = 0;
int yc = 0;
switch (m_cellularDistanceFunction) {
default:
case Euclidean:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
unsigned char lutPos = Index2D_256(0, xi, yi);
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY;
if (newDistance < distance) {
distance = newDistance;
xc = xi;
yc = yi;
}
}
}
break;
case Manhattan:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
unsigned char lutPos = Index2D_256(0, xi, yi);
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY));
if (newDistance < distance) {
distance = newDistance;
xc = xi;
yc = yi;
}
}
}
break;
case Natural:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
unsigned char lutPos = Index2D_256(0, xi, yi);
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY);
if (newDistance < distance) {
distance = newDistance;
xc = xi;
yc = yi;
}
}
}
break;
}
unsigned char lutPos;
switch (m_cellularReturnType) {
case CellValue:
return ValCoord2D(m_seed, xc, yc);
case NoiseLookup:
assert(m_cellularNoiseLookup);
lutPos = Index2D_256(0, xc, yc);
return m_cellularNoiseLookup->GetNoise(xc + CELL_2D_X[lutPos] * m_cellularJitter, yc + CELL_2D_Y[lutPos] * m_cellularJitter);
case Distance:
return distance;
default:
return 0;
}
}
FN_DECIMAL FastNoise::SingleCellular2Edge(FN_DECIMAL x, FN_DECIMAL y) const {
int xr = FastRound(x);
int yr = FastRound(y);
FN_DECIMAL distance[FN_CELLULAR_INDEX_MAX + 1] = { 999999, 999999, 999999, 999999 };
switch (m_cellularDistanceFunction) {
default:
case Euclidean:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
unsigned char lutPos = Index2D_256(0, xi, yi);
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = vecX * vecX + vecY * vecY;
for (int i = m_cellularDistanceIndex1; i > 0; i--)
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
distance[0] = fmin(distance[0], newDistance);
}
}
break;
case Manhattan:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
unsigned char lutPos = Index2D_256(0, xi, yi);
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = FastAbs(vecX) + FastAbs(vecY);
for (int i = m_cellularDistanceIndex1; i > 0; i--)
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
distance[0] = fmin(distance[0], newDistance);
}
}
break;
case Natural:
for (int xi = xr - 1; xi <= xr + 1; xi++) {
for (int yi = yr - 1; yi <= yr + 1; yi++) {
unsigned char lutPos = Index2D_256(0, xi, yi);
FN_DECIMAL vecX = xi - x + CELL_2D_X[lutPos] * m_cellularJitter;
FN_DECIMAL vecY = yi - y + CELL_2D_Y[lutPos] * m_cellularJitter;
FN_DECIMAL newDistance = (FastAbs(vecX) + FastAbs(vecY)) + (vecX * vecX + vecY * vecY);
for (int i = m_cellularDistanceIndex1; i > 0; i--)
distance[i] = fmax(fmin(distance[i], newDistance), distance[i - 1]);
distance[0] = fmin(distance[0], newDistance);
}
}
break;
}
switch (m_cellularReturnType) {
case Distance2:
return distance[m_cellularDistanceIndex1];
case Distance2Add:
return distance[m_cellularDistanceIndex1] + distance[m_cellularDistanceIndex0];
case Distance2Sub:
return distance[m_cellularDistanceIndex1] - distance[m_cellularDistanceIndex0];
case Distance2Mul:
return distance[m_cellularDistanceIndex1] * distance[m_cellularDistanceIndex0];
case Distance2Div:
return distance[m_cellularDistanceIndex0] / distance[m_cellularDistanceIndex1];
default:
return 0;
}
}
void FastNoise::GradientPerturb(FN_DECIMAL &x, FN_DECIMAL &y, FN_DECIMAL &z) const {
SingleGradientPerturb(0, m_gradientPerturbAmp, m_frequency, x, y, z);
}
void FastNoise::GradientPerturbFractal(FN_DECIMAL &x, FN_DECIMAL &y, FN_DECIMAL &z) const {
FN_DECIMAL amp = m_gradientPerturbAmp * m_fractalBounding;
FN_DECIMAL freq = m_frequency;
int i = 0;
SingleGradientPerturb(m_perm[0], amp, m_frequency, x, y, z);
while (++i < m_octaves) {
freq *= m_lacunarity;
amp *= m_gain;
SingleGradientPerturb(m_perm[i], amp, freq, x, y, z);
}
}
void FastNoise::SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL &x, FN_DECIMAL &y, FN_DECIMAL &z) const {
FN_DECIMAL xf = x * frequency;
FN_DECIMAL yf = y * frequency;
FN_DECIMAL zf = z * frequency;
int x0 = FastFloor(xf);
int y0 = FastFloor(yf);
int z0 = FastFloor(zf);
int x1 = x0 + 1;
int y1 = y0 + 1;
int z1 = z0 + 1;
FN_DECIMAL xs, ys, zs;
switch (m_interp) {
default:
case Linear:
xs = xf - (FN_DECIMAL)x0;
ys = yf - (FN_DECIMAL)y0;
zs = zf - (FN_DECIMAL)z0;
break;
case Hermite:
xs = InterpHermiteFunc(xf - (FN_DECIMAL)x0);
ys = InterpHermiteFunc(yf - (FN_DECIMAL)y0);
zs = InterpHermiteFunc(zf - (FN_DECIMAL)z0);
break;
case Quintic:
xs = InterpQuinticFunc(xf - (FN_DECIMAL)x0);
ys = InterpQuinticFunc(yf - (FN_DECIMAL)y0);
zs = InterpQuinticFunc(zf - (FN_DECIMAL)z0);
break;
}
int lutPos0 = Index3D_256(offset, x0, y0, z0);
int lutPos1 = Index3D_256(offset, x1, y0, z0);
FN_DECIMAL lx0x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
FN_DECIMAL ly0x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
FN_DECIMAL lz0x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
lutPos0 = Index3D_256(offset, x0, y1, z0);
lutPos1 = Index3D_256(offset, x1, y1, z0);
FN_DECIMAL lx1x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
FN_DECIMAL ly1x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
FN_DECIMAL lz1x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
FN_DECIMAL lx0y = Lerp(lx0x, lx1x, ys);
FN_DECIMAL ly0y = Lerp(ly0x, ly1x, ys);
FN_DECIMAL lz0y = Lerp(lz0x, lz1x, ys);
lutPos0 = Index3D_256(offset, x0, y0, z1);
lutPos1 = Index3D_256(offset, x1, y0, z1);
lx0x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
ly0x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
lz0x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
lutPos0 = Index3D_256(offset, x0, y1, z1);
lutPos1 = Index3D_256(offset, x1, y1, z1);
lx1x = Lerp(CELL_3D_X[lutPos0], CELL_3D_X[lutPos1], xs);
ly1x = Lerp(CELL_3D_Y[lutPos0], CELL_3D_Y[lutPos1], xs);
lz1x = Lerp(CELL_3D_Z[lutPos0], CELL_3D_Z[lutPos1], xs);
x += Lerp(lx0y, Lerp(lx0x, lx1x, ys), zs) * warpAmp;
y += Lerp(ly0y, Lerp(ly0x, ly1x, ys), zs) * warpAmp;
z += Lerp(lz0y, Lerp(lz0x, lz1x, ys), zs) * warpAmp;
}
void FastNoise::GradientPerturb(FN_DECIMAL &x, FN_DECIMAL &y) const {
SingleGradientPerturb(0, m_gradientPerturbAmp, m_frequency, x, y);
}
void FastNoise::GradientPerturbFractal(FN_DECIMAL &x, FN_DECIMAL &y) const {
FN_DECIMAL amp = m_gradientPerturbAmp * m_fractalBounding;
FN_DECIMAL freq = m_frequency;
int i = 0;
SingleGradientPerturb(m_perm[0], amp, m_frequency, x, y);
while (++i < m_octaves) {
freq *= m_lacunarity;
amp *= m_gain;
SingleGradientPerturb(m_perm[i], amp, freq, x, y);
}
}
void FastNoise::SingleGradientPerturb(unsigned char offset, FN_DECIMAL warpAmp, FN_DECIMAL frequency, FN_DECIMAL &x, FN_DECIMAL &y) const {
FN_DECIMAL xf = x * frequency;
FN_DECIMAL yf = y * frequency;
int x0 = FastFloor(xf);
int y0 = FastFloor(yf);
int x1 = x0 + 1;
int y1 = y0 + 1;
FN_DECIMAL xs, ys;
switch (m_interp) {
default:
case Linear:
xs = xf - (FN_DECIMAL)x0;
ys = yf - (FN_DECIMAL)y0;
break;
case Hermite:
xs = InterpHermiteFunc(xf - (FN_DECIMAL)x0);
ys = InterpHermiteFunc(yf - (FN_DECIMAL)y0);
break;
case Quintic:
xs = InterpQuinticFunc(xf - (FN_DECIMAL)x0);
ys = InterpQuinticFunc(yf - (FN_DECIMAL)y0);
break;
}
int lutPos0 = Index2D_256(offset, x0, y0);
int lutPos1 = Index2D_256(offset, x1, y0);
FN_DECIMAL lx0x = Lerp(CELL_2D_X[lutPos0], CELL_2D_X[lutPos1], xs);
FN_DECIMAL ly0x = Lerp(CELL_2D_Y[lutPos0], CELL_2D_Y[lutPos1], xs);
lutPos0 = Index2D_256(offset, x0, y1);
lutPos1 = Index2D_256(offset, x1, y1);
FN_DECIMAL lx1x = Lerp(CELL_2D_X[lutPos0], CELL_2D_X[lutPos1], xs);
FN_DECIMAL ly1x = Lerp(CELL_2D_Y[lutPos0], CELL_2D_Y[lutPos1], xs);
x += Lerp(lx0x, lx1x, ys) * warpAmp;
y += Lerp(ly0x, ly1x, ys) * warpAmp;
}
} // namespace fastnoise