pandemonium_engine/modules/wfc/tiling_wfc.h
2022-04-21 17:45:30 +02:00

364 lines
10 KiB
C++

#ifndef FAST_WFC_TILING_WFC_HPP_
#define FAST_WFC_TILING_WFC_HPP_
#include "core/vector.h"
#include <unordered_map>
#include "array_2d.h"
#include "wfc.h"
// The distinct symmetries of a tile.
// It represents how the tile behave when it is rotated or reflected
enum class Symmetry {
X,
T,
I,
L,
backslash,
P
};
/**
// Return the number of possible distinct orientations for a tile.
// An orientation is a combination of rotations and reflections.
*/
constexpr uint32_t nb_of_possible_orientations(const Symmetry &symmetry) {
switch (symmetry) {
case Symmetry::X:
return 1;
case Symmetry::I:
case Symmetry::backslash:
return 2;
case Symmetry::T:
case Symmetry::L:
return 4;
default:
return 8;
}
}
// A tile that can be placed on the board.
template <typename T>
struct Tile {
Vector<Array2D<T>> data; // The different orientations of the tile
Symmetry symmetry; // The symmetry of the tile
double weight; // Its weight on the distribution of presence of tiles
// Generate the map associating an orientation id to the orientation
// id obtained when rotating 90° anticlockwise the tile.
static Vector<uint32_t> generate_rotation_map(const Symmetry &symmetry) {
switch (symmetry) {
case Symmetry::X:
return { 0 };
case Symmetry::I:
case Symmetry::backslash:
return { 1, 0 };
case Symmetry::T:
case Symmetry::L:
return { 1, 2, 3, 0 };
case Symmetry::P:
default:
return { 1, 2, 3, 0, 5, 6, 7, 4 };
}
}
// Generate the map associating an orientation id to the orientation
// id obtained when reflecting the tile along the x axis.
static Vector<uint32_t> generate_reflection_map(const Symmetry &symmetry) {
switch (symmetry) {
case Symmetry::X:
return { 0 };
case Symmetry::I:
return { 0, 1 };
case Symmetry::backslash:
return { 1, 0 };
case Symmetry::T:
return { 0, 3, 2, 1 };
case Symmetry::L:
return { 1, 0, 3, 2 };
case Symmetry::P:
default:
return { 4, 7, 6, 5, 0, 3, 2, 1 };
}
}
// Generate the map associating an orientation id and an action to the
// resulting orientation id.
// Actions 0, 1, 2, and 3 are 0°, 90°, 180°, and 270° anticlockwise rotations.
// Actions 4, 5, 6, and 7 are actions 0, 1, 2, and 3 preceded by a reflection
// on the x axis.
static Vector<Vector<uint32_t>> generate_action_map(const Symmetry &symmetry) {
Vector<uint32_t> rotation_map = generate_rotation_map(symmetry);
Vector<uint32_t> reflection_map = generate_reflection_map(symmetry);
int size = rotation_map.size();
Vector<Vector<uint32_t>> action_map(8, Vector<uint32_t>(size));
for (int i = 0; i < size; ++i) {
action_map[0][i] = i;
}
for (int a = 1; a < 4; ++a) {
for (int i = 0; i < size; ++i) {
action_map[a][i] = rotation_map[action_map[a - 1][i]];
}
}
for (int i = 0; i < size; ++i) {
action_map[4][i] = reflection_map[action_map[0][i]];
}
for (int a = 5; a < 8; ++a) {
for (int i = 0; i < size; ++i) {
action_map[a][i] = rotation_map[action_map[a - 1][i]];
}
}
return action_map;
}
// Generate all distincts rotations of a 2D array given its symmetries;
static Vector<Array2D<T>> generate_oriented(Array2D<T> data, Symmetry symmetry) {
Vector<Array2D<T>> oriented;
oriented.push_back(data);
switch (symmetry) {
case Symmetry::I:
case Symmetry::backslash:
oriented.push_back(data.rotated());
break;
case Symmetry::T:
case Symmetry::L:
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated());
break;
case Symmetry::P:
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated().reflected());
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated());
oriented.push_back(data = data.rotated());
break;
default:
break;
}
return oriented;
}
// Create a tile with its differents orientations, its symmetries and its
// weight on the distribution of tiles.
Tile(Vector<Array2D<T>> data, Symmetry symmetry, double weight) :
data(data), symmetry(symmetry), weight(weight) {}
// Create a tile with its base orientation, its symmetries and its
// weight on the distribution of tiles.
// The other orientations are generated with its first one.
Tile(Array2D<T> data, Symmetry symmetry, double weight) :
data(generate_oriented(data, symmetry)), symmetry(symmetry), weight(weight) {}
};
struct TilingWFCOptions {
bool periodic_output;
};
// Class generating a new image with the tiling WFC algorithm.
template <typename T>
class TilingWFC {
private:
Vector<Tile<T>> tiles;
Vector<std::pair<uint32_t, uint32_t>> id_to_oriented_tile;
Vector<Vector<uint32_t>> oriented_tile_ids;
TilingWFCOptions options;
WFC wfc;
public:
uint32_t height;
uint32_t width;
private:
// Generate mapping from id to oriented tiles and vice versa.
static std::pair<Vector<std::pair<uint32_t, uint32_t>>, Vector<Vector<uint32_t>>> generate_oriented_tile_ids(const Vector<Tile<T>> &tiles) {
Vector<std::pair<uint32_t, uint32_t>> id_to_oriented_tile;
Vector<Vector<uint32_t>> oriented_tile_ids;
uint32_t id = 0;
for (int i = 0; i < tiles.size(); i++) {
oriented_tile_ids.push_back({});
for (int j = 0; j < tiles[i].data.size(); j++) {
id_to_oriented_tile.push_back({ i, j });
oriented_tile_ids[i].push_back(id);
id++;
}
}
return { id_to_oriented_tile, oriented_tile_ids };
}
struct DensePropagatorHelper {
Vector<bool> directions[4];
void resize(const int size) {
for (int i = 0; i < 4; ++i) {
directions[i].resize(size);
directions[i].fill(false);
}
}
};
// Generate the propagator which will be used in the wfc algorithm.
static Vector<PropagatorEntry> generate_propagator(
const Vector<NeighbourData> &neighbors,
Vector<Tile<T>> tiles,
Vector<std::pair<uint32_t, uint32_t>> id_to_oriented_tile,
Vector<Vector<uint32_t>> oriented_tile_ids) {
size_t nb_oriented_tiles = id_to_oriented_tile.size();
Vector<DensePropagatorHelper> dense_propagator;
dense_propagator.resize(nb_oriented_tiles);
for (int i = 0; i < nb_oriented_tiles; ++i) {
dense_propagator.write[i].resize(nb_oriented_tiles);
}
for (auto neighbor : neighbors) {
uint32_t tile1 = std::get<0>(neighbor);
uint32_t orientation1 = std::get<1>(neighbor);
uint32_t tile2 = std::get<2>(neighbor);
uint32_t orientation2 = std::get<3>(neighbor);
Vector<Vector<uint32_t>> action_map1 = Tile<T>::generate_action_map(tiles[tile1].symmetry);
Vector<Vector<uint32_t>> action_map2 = Tile<T>::generate_action_map(tiles[tile2].symmetry);
auto add = [&](uint32_t action, uint32_t direction) {
uint32_t temp_orientation1 = action_map1[action][orientation1];
uint32_t temp_orientation2 = action_map2[action][orientation2];
uint32_t oriented_tile_id1 = oriented_tile_ids[tile1][temp_orientation1];
uint32_t oriented_tile_id2 = oriented_tile_ids[tile2][temp_orientation2];
dense_propagator[oriented_tile_id1][direction][oriented_tile_id2] = true;
direction = get_opposite_direction(direction);
dense_propagator[oriented_tile_id2][direction][oriented_tile_id1] = true;
};
add(0, 2);
add(1, 0);
add(2, 1);
add(3, 3);
add(4, 1);
add(5, 3);
add(6, 2);
add(7, 0);
}
Vector<PropagatorEntry> propagator(nb_oriented_tiles);
for (size_t i = 0; i < nb_oriented_tiles; ++i) {
for (size_t j = 0; j < nb_oriented_tiles; ++j) {
for (size_t d = 0; d < 4; ++d) {
if (dense_propagator[i][d][j]) {
propagator[i][d].push_back(j);
}
}
}
}
return propagator;
}
// Get probability of presence of tiles.
static Vector<double> get_tiles_weights(const Vector<Tile<T>> &tiles) {
Vector<double> frequencies;
for (int i = 0; i < tiles.size(); ++i) {
for (int j = 0; j < tiles[i].data.size(); ++j) {
frequencies.push_back(tiles[i].weight / tiles[i].data.size());
}
}
return frequencies;
}
// Translate the generic WFC result into the image result
Array2D<T> id_to_tiling(Array2D<uint32_t> ids) {
uint32_t size = tiles[0].data[0].height;
Array2D<T> tiling(size * ids.height, size * ids.width);
for (uint32_t i = 0; i < ids.height; i++) {
for (uint32_t j = 0; j < ids.width; j++) {
std::pair<uint32_t, uint32_t> oriented_tile = id_to_oriented_tile[ids.get(i, j)];
for (uint32_t y = 0; y < size; y++) {
for (uint32_t x = 0; x < size; x++) {
tiling.get(i * size + y, j * size + x) = tiles[oriented_tile.first].data[oriented_tile.second].get(y, x);
}
}
}
}
return tiling;
}
void set_tile(uint32_t tile_id, uint32_t i, uint32_t j) {
for (int p = 0; p < id_to_oriented_tile.size(); p++) {
if (tile_id != p) {
wfc.remove_wave_pattern(i, j, p);
}
}
}
public:
struct NeighbourData {
uint32_t data[4];
NeighbourData() {
for (int i = 0; i < 4; ++i) {
direction[i] = 0;
}
}
};
// Construct the TilingWFC class to generate a tiled image.
TilingWFC(
const Vector<Tile<T>> &tiles,
const Vector<NeighbourData> &neighbors,
const uint32_t height, const uint32_t width,
const TilingWFCOptions &options, int seed) :
tiles(tiles),
id_to_oriented_tile(generate_oriented_tile_ids(tiles).first),
oriented_tile_ids(generate_oriented_tile_ids(tiles).second),
options(options),
wfc(options.periodic_output, seed, get_tiles_weights(tiles),
generate_propagator(neighbors, tiles, id_to_oriented_tile,
oriented_tile_ids),
height, width),
height(height),
width(width) {}
// Set the tile at a specific position.
// Returns false if the given tile and orientation does not exist,
// or if the coordinates are not in the wave
bool set_tile(uint32_t tile_id, uint32_t orientation, uint32_t i, uint32_t j) {
if (tile_id >= oriented_tile_ids.size() || orientation >= oriented_tile_ids[tile_id].size() || i >= height || j >= width) {
return false;
}
uint32_t oriented_tile_id = oriented_tile_ids[tile_id][orientation];
set_tile(oriented_tile_id, i, j);
return true;
}
// Run the tiling wfc and return the result if the algorithm succeeded
Array2D<T> run() {
Array2D<uint32_t> a = wfc.run();
if (a.width == 0 && a.height == 0) {
return Array2D<T>(0, 0);
}
return id_to_tiling(a);
}
};
#endif // FAST_WFC_TILING_WFC_HPP_