2022-03-15 13:29:32 +01:00
<?xml version="1.0" encoding="UTF-8" ?>
2022-08-23 13:09:12 +02:00
<class name= "Transform" version= "3.8" >
2022-03-15 13:29:32 +01:00
<brief_description >
3D transformation (3× 4 matrix).
</brief_description>
<description >
3× 4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials >
<link title= "Math tutorial index" > $DOCS_URL/tutorials/math/index.html</link>
<link title= "Matrices and transforms" > $DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title= "Using 3D transforms" > $DOCS_URL/tutorials/3d/using_transforms.html</link>
<link title= "Matrix Transform Demo" > https://godotengine.org/asset-library/asset/584</link>
<link title= "3D Platformer Demo" > https://godotengine.org/asset-library/asset/125</link>
<link title= "2.5D Demo" > https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods >
<method name= "Transform" >
<return type= "Transform" />
2022-08-21 00:40:49 +02:00
<argument index= "0" name= "from" type= "Transform2D" />
2022-03-15 13:29:32 +01:00
<description >
2022-08-21 00:40:49 +02:00
Constructs a Transform from a [Transform2D].
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" />
2022-08-21 00:40:49 +02:00
<argument index= "0" name= "from" type= "Basis" />
2022-03-15 13:29:32 +01:00
<description >
2022-08-21 00:40:49 +02:00
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" />
2022-08-21 00:40:49 +02:00
<argument index= "0" name= "from" type= "Quaternion" />
2022-03-15 13:29:32 +01:00
<description >
2022-08-21 00:40:49 +02:00
Constructs a Transform from a [Quaternion]. The origin will be [code]Vector3(0, 0, 0)[/code].
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" />
2022-08-21 00:40:49 +02:00
<argument index= "0" name= "basis" type= "Basis" />
<argument index= "1" name= "origin" type= "Vector3" />
2022-03-15 13:29:32 +01:00
<description >
2022-08-21 00:40:49 +02:00
Constructs a Transform from a [Basis] and [Vector3].
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "Transform" >
<return type= "Transform" />
2022-08-21 00:40:49 +02:00
<argument index= "0" name= "x_axis" type= "Vector3" />
<argument index= "1" name= "y_axis" type= "Vector3" />
<argument index= "2" name= "z_axis" type= "Vector3" />
<argument index= "3" name= "origin" type= "Vector3" />
2022-03-15 13:29:32 +01:00
<description >
2022-08-21 00:40:49 +02:00
Constructs a Transform from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "affine_inverse" >
<return type= "Transform" />
<description >
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "affine_invert" >
<description >
</description>
</method>
<method name= "get_basis" >
<return type= "Basis" />
<description >
</description>
</method>
<method name= "get_origin" >
<return type= "Vector3" />
<description >
</description>
</method>
2022-03-15 13:29:32 +01:00
<method name= "interpolate_with" >
<return type= "Transform" />
<argument index= "0" name= "transform" type= "Transform" />
<argument index= "1" name= "weight" type= "float" />
<description >
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name= "inverse" >
<return type= "Transform" />
<description >
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "invert" >
<description >
</description>
</method>
2022-03-15 13:29:32 +01:00
<method name= "is_equal_approx" >
<return type= "bool" />
<argument index= "0" name= "transform" type= "Transform" />
<description >
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name= "looking_at" >
<return type= "Transform" />
<argument index= "0" name= "target" type= "Vector3" />
<argument index= "1" name= "up" type= "Vector3" />
<description >
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
Operations take place in global space.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "orthogonalize" >
<description >
</description>
</method>
<method name= "orthogonalized" >
<return type= "Transform" />
<description >
</description>
</method>
<method name= "orthonormalize" >
<description >
</description>
</method>
2022-03-15 13:29:32 +01:00
<method name= "orthonormalized" >
<return type= "Transform" />
<description >
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "rotate" >
<argument index= "0" name= "axis" type= "Vector3" />
<argument index= "1" name= "phi" type= "float" />
<description >
</description>
</method>
<method name= "rotate_basis" >
<argument index= "0" name= "axis" type= "Vector3" />
<argument index= "1" name= "phi" type= "float" />
<description >
</description>
</method>
<method name= "rotate_local" >
<argument index= "0" name= "axis" type= "Vector3" />
<argument index= "1" name= "phi" type= "float" />
<description >
</description>
</method>
2022-03-15 13:29:32 +01:00
<method name= "rotated" >
<return type= "Transform" />
<argument index= "0" name= "axis" type= "Vector3" />
<argument index= "1" name= "phi" type= "float" />
<description >
2022-08-14 20:35:11 +02:00
Returns a copy of the transform rotated around the given [code]axis[/code] by the given [code]angle[/code] (in radians).
The [code]axis[/code] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "rotated_local" >
2022-08-14 20:35:11 +02:00
<return type= "Transform" />
<argument index= "0" name= "axis" type= "Vector3" />
2022-08-21 00:40:49 +02:00
<argument index= "1" name= "phi" type= "float" />
2022-08-14 20:35:11 +02:00
<description >
Returns a copy of the transform rotated around the given [code]axis[/code] by the given [code]angle[/code] (in radians).
The [code]axis[/code] must be a normalized vector.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
2022-03-15 13:29:32 +01:00
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "scale" >
<argument index= "0" name= "scale" type= "Vector3" />
<description >
</description>
</method>
<method name= "scale_basis" >
<argument index= "0" name= "scale" type= "Vector3" />
<description >
</description>
</method>
2022-03-15 13:29:32 +01:00
<method name= "scaled" >
<return type= "Transform" />
<argument index= "0" name= "scale" type= "Vector3" />
<description >
2022-08-14 20:35:11 +02:00
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "scaled_local" >
2022-08-14 20:35:11 +02:00
<return type= "Transform" />
<argument index= "0" name= "scale" type= "Vector3" />
<description >
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name= "set_basis" >
<argument index= "0" name= "basis" type= "Basis" />
<description >
</description>
</method>
<method name= "set_look_at" >
<argument index= "0" name= "eye" type= "Vector3" />
<argument index= "1" name= "target" type= "Vector3" />
<argument index= "2" name= "up" type= "Vector3" />
<description >
</description>
</method>
<method name= "set_origin" >
<argument index= "0" name= "origin" type= "Vector3" />
<description >
</description>
</method>
<method name= "spherical_interpolate_with" >
2022-08-14 20:35:11 +02:00
<return type= "Transform" />
2022-08-21 00:40:49 +02:00
<argument index= "0" name= "transform" type= "Transform" />
<argument index= "1" name= "c" type= "float" />
<description >
</description>
</method>
<method name= "translate_localr" >
<argument index= "0" name= "tx" type= "float" />
<argument index= "1" name= "ty" type= "float" />
<argument index= "2" name= "tz" type= "float" />
<description >
</description>
</method>
<method name= "translate_localv" >
<argument index= "0" name= "scale" type= "Vector3" />
<description >
</description>
</method>
<method name= "translated" >
<return type= "Transform" />
<argument index= "0" name= "translation" type= "Vector3" />
2022-08-14 20:35:11 +02:00
<description >
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
2022-03-15 13:29:32 +01:00
</description>
</method>
2022-08-14 20:35:11 +02:00
<method name= "translated_local" >
2022-03-15 13:29:32 +01:00
<return type= "Transform" />
<argument index= "0" name= "offset" type= "Vector3" />
<description >
2022-08-14 20:35:11 +02:00
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
2022-03-15 13:29:32 +01:00
</description>
</method>
<method name= "xform" >
<return type= "Variant" />
<argument index= "0" name= "v" type= "Variant" />
<description >
Transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform.
</description>
</method>
<method name= "xform_inv" >
<return type= "Variant" />
<argument index= "0" name= "v" type= "Variant" />
<description >
Inverse-transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
</description>
</method>
</methods>
<members >
<member name= "basis" type= "Basis" setter= "" getter= "" default= "Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )" >
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name= "origin" type= "Vector3" setter= "" getter= "" default= "Vector3( 0, 0, 0 )" >
The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
</member>
</members>
<constants >
<constant name= "IDENTITY" value= "Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )" >
[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name= "FLIP_X" value= "Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )" >
[Transform] with mirroring applied perpendicular to the YZ plane.
</constant>
<constant name= "FLIP_Y" value= "Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )" >
[Transform] with mirroring applied perpendicular to the XZ plane.
</constant>
<constant name= "FLIP_Z" value= "Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )" >
[Transform] with mirroring applied perpendicular to the XY plane.
</constant>
</constants>
</class>