pandemonium_engine/doc/classes/Transform2D.xml

345 lines
13 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
2024-09-08 17:02:09 +02:00
<class name="Transform2D" version="4.5">
<brief_description>
2D transformation (2×3 matrix).
</brief_description>
<description>
2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
2023-08-29 22:33:15 +02:00
<link title="Math tutorial index">$DOCS_URL/tutorials/math/index.md</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.md</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="from" type="Transform" />
<description>
Constructs the transform from a 3D [Transform].
</description>
</method>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="x_axis" type="Vector2" />
<argument index="1" name="y_axis" type="Vector2" />
<argument index="2" name="origin" type="Vector2" />
<description>
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</method>
<method name="Transform2D">
<return type="Transform2D" />
<argument index="0" name="rotation" type="float" />
<argument index="1" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</method>
<method name="affine_inverse">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="affine_invert">
<description>
</description>
</method>
<method name="basis_determinant">
<return type="float" />
<description>
</description>
</method>
<method name="basis_scaled">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="basis_xform">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="basis_xform_inv">
<return type="Vector2" />
<argument index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="get_axis">
<return type="Vector2" />
<argument index="0" name="axis" type="int" />
<description>
</description>
</method>
<method name="get_column">
<return type="Vector2" />
2022-12-22 19:51:25 +01:00
<argument index="0" name="column" type="int" />
2022-08-21 00:40:49 +02:00
<description>
</description>
</method>
<method name="get_origin">
<return type="Vector2" />
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation">
<return type="float" />
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale">
<return type="Vector2" />
<description>
Returns the scale.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="get_skew">
<return type="float" />
<description>
</description>
</method>
<method name="interpolate_with">
<return type="Transform2D" />
<argument index="0" name="transform" type="Transform2D" />
<argument index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="invert">
<description>
</description>
</method>
<method name="is_equal_approx">
<return type="bool" />
<argument index="0" name="transform" type="Transform2D" />
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="looking_at">
<return type="Transform2D" />
<argument index="0" name="target" type="Vector2" />
<description>
</description>
</method>
<method name="orthonormalize">
<description>
</description>
</method>
<method name="orthonormalized">
<return type="Transform2D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="rotate">
<argument index="0" name="phi" type="float" />
<description>
</description>
</method>
<method name="rotated">
<return type="Transform2D" />
2022-08-21 00:40:49 +02:00
<argument index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="rotated_local">
<return type="Transform2D" />
<argument index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="scale">
<argument index="0" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="scale_basis">
<argument index="0" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="scaled">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="scaled_local">
<return type="Transform2D" />
<argument index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="set_axis">
<argument index="0" name="axis" type="int" />
<argument index="1" name="vec" type="Vector2" />
<description>
</description>
</method>
<method name="set_column">
2022-12-22 19:51:25 +01:00
<argument index="0" name="column" type="float" />
2022-08-21 00:40:49 +02:00
<description>
</description>
</method>
<method name="set_origin">
<argument index="0" name="origin" type="float" />
<description>
</description>
</method>
<method name="set_rotation_and_scale">
<argument index="0" name="rot" type="float" />
<argument index="1" name="scale" type="Vector2" />
<description>
</description>
</method>
<method name="set_rotation_scale_and_skew">
<argument index="0" name="rot" type="float" />
<argument index="1" name="scale" type="Vector2" />
<argument index="2" name="skew" type="float" />
<description>
</description>
</method>
<method name="set_scale">
<argument index="0" name="scale" type="float" />
<description>
</description>
</method>
<method name="set_skew">
<argument index="0" name="angle" type="float" />
<description>
</description>
</method>
<method name="tdotx">
<return type="float" />
<argument index="0" name="v" type="Vector2" />
<description>
</description>
</method>
<method name="tdoty">
<return type="float" />
<argument index="0" name="v" type="Vector2" />
<description>
</description>
</method>
<method name="translate_localr">
<argument index="0" name="tx" type="float" />
<argument index="1" name="ty" type="float" />
<description>
</description>
</method>
<method name="translate_localv">
<argument index="0" name="translation" type="Vector2" />
<description>
</description>
</method>
<method name="translated">
<return type="Transform2D" />
<argument index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local">
<return type="Transform2D" />
<argument index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
2022-08-21 00:40:49 +02:00
<method name="translater">
<argument index="0" name="tx" type="float" />
<argument index="1" name="ty" type="float" />
<description>
</description>
</method>
<method name="translatev">
<argument index="0" name="origin" type="Vector2" />
<description>
</description>
</method>
<method name="untranslated">
<return type="Transform2D" />
<description>
</description>
</method>
<method name="xform">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant" />
<argument index="0" name="v" type="Variant" />
<description>
Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling [code]inverse().xform(v)[/code] on this transform. For affine transformations (e.g. with scaling) see [method affine_inverse] method.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
</class>