mirror of
https://github.com/Relintai/gdnative_cpp.git
synced 2024-11-20 10:57:23 +01:00
342 lines
11 KiB
C++
342 lines
11 KiB
C++
#ifndef PANDEMONIUM_MATH_H
|
|
#define PANDEMONIUM_MATH_H
|
|
|
|
/*************************************************************************/
|
|
/* Math.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PANDEMONIUM ENGINE */
|
|
/* https://pandemoniumengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Pandemonium Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "defs.h"
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <cmath>
|
|
|
|
class Math {
|
|
public:
|
|
// Functions reproduced as in Pandemonium's source code `math_funcs.h`.
|
|
// Some are overloads to automatically support changing real_t into either double or float in the way Pandemonium does.
|
|
|
|
static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) {
|
|
return ::fmod(p_x, p_y);
|
|
}
|
|
static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) {
|
|
return ::fmodf(p_x, p_y);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double floor(double p_x) {
|
|
return ::floor(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float floor(float p_x) {
|
|
return ::floorf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double exp(double p_x) {
|
|
return ::exp(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float exp(float p_x) {
|
|
return ::expf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double sin(double p_x) {
|
|
return ::sin(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float sin(float p_x) {
|
|
return ::sinf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double cos(double p_x) {
|
|
return ::cos(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float cos(float p_x) {
|
|
return ::cosf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double tan(double p_x) {
|
|
return ::tan(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float tan(float p_x) {
|
|
return ::tanf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double asin(double p_x) {
|
|
return ::asin(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float asin(float p_x) {
|
|
return ::asinf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double acos(double p_x) {
|
|
return ::acos(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float acos(float p_x) {
|
|
return ::acosf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double atan(double p_x) {
|
|
return ::atan(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float atan(float p_x) {
|
|
return ::atanf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) {
|
|
return ::atan2(p_y, p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) {
|
|
return ::atan2f(p_y, p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double sqrt(double p_x) {
|
|
return ::sqrt(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float sqrt(float p_x) {
|
|
return ::sqrtf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float lerp(float minv, float maxv, float t) {
|
|
return minv + t * (maxv - minv);
|
|
}
|
|
static _ALWAYS_INLINE_ double lerp(double minv, double maxv, double t) {
|
|
return minv + t * (maxv - minv);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
|
|
double difference = fmod(p_to - p_from, Math_TAU);
|
|
double distance = fmod(2.0 * difference, Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
static _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
|
|
float difference = fmod(p_to - p_from, (float)Math_TAU);
|
|
float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
|
|
template <typename T>
|
|
static _ALWAYS_INLINE_ T clamp(T x, T minv, T maxv) {
|
|
if (x < minv) {
|
|
return minv;
|
|
}
|
|
if (x > maxv) {
|
|
return maxv;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template <typename T>
|
|
static _ALWAYS_INLINE_ T min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
static _ALWAYS_INLINE_ T max(T a, T b) {
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
static _ALWAYS_INLINE_ T sign(T x) {
|
|
return static_cast<T>(x < 0 ? -1 : 1);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double deg2rad(double p_y) {
|
|
return p_y * Math_PI / 180.0;
|
|
}
|
|
static _ALWAYS_INLINE_ float deg2rad(float p_y) {
|
|
return p_y * static_cast<float>(Math_PI) / 180.f;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double rad2deg(double p_y) {
|
|
return p_y * 180.0 / Math_PI;
|
|
}
|
|
static _ALWAYS_INLINE_ float rad2deg(float p_y) {
|
|
return p_y * 180.f / static_cast<float>(Math_PI);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
|
|
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
|
}
|
|
static _ALWAYS_INLINE_ float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
|
|
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
real_t tolerance = CMP_EPSILON * ABS(a);
|
|
if (tolerance < CMP_EPSILON) {
|
|
tolerance = CMP_EPSILON;
|
|
}
|
|
return ABS(a - b) < tolerance;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
return ABS(a - b) < tolerance;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_zero_approx(real_t s) {
|
|
return ABS(s) < CMP_EPSILON;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_weight) {
|
|
if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
|
|
return p_from;
|
|
}
|
|
double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
|
|
return x * x * (3.0 - 2.0 * x);
|
|
}
|
|
static _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_weight) {
|
|
if (is_equal_approx(p_from, p_to)) {
|
|
return p_from;
|
|
}
|
|
float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
|
|
return x * x * (3.0f - 2.0f * x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
|
|
return ABS(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
|
|
return ABS(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double linear2db(double p_linear) {
|
|
return log(p_linear) * 8.6858896380650365530225783783321;
|
|
}
|
|
static _ALWAYS_INLINE_ float linear2db(float p_linear) {
|
|
return log(p_linear) * 8.6858896380650365530225783783321f;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double db2linear(double p_db) {
|
|
return exp(p_db * 0.11512925464970228420089957273422);
|
|
}
|
|
static _ALWAYS_INLINE_ float db2linear(float p_db) {
|
|
return exp(p_db * 0.11512925464970228420089957273422f);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double round(double p_val) {
|
|
return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
|
|
}
|
|
static _ALWAYS_INLINE_ float round(float p_val) {
|
|
return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) {
|
|
int64_t range = max - min;
|
|
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float wrapf(real_t value, real_t min, real_t max) {
|
|
const real_t range = max - min;
|
|
return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float stepify(float p_value, float p_step) {
|
|
if (p_step != 0) {
|
|
p_value = floor(p_value / p_step + 0.5f) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
static _ALWAYS_INLINE_ double stepify(double p_value, double p_step) {
|
|
if (p_step != 0) {
|
|
p_value = floor(p_value / p_step + 0.5) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ unsigned int next_power_of_2(unsigned int x) {
|
|
if (x == 0)
|
|
return 0;
|
|
|
|
--x;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
|
|
return ++x;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_nan(double p_val) {
|
|
#ifdef _MSC_VER
|
|
return _isnan(p_val);
|
|
#elif defined(__GNUC__) && __GNUC__ < 6
|
|
union {
|
|
uint64_t u;
|
|
double f;
|
|
} ieee754;
|
|
ieee754.f = p_val;
|
|
// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
|
|
return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
|
|
#else
|
|
return isnan(p_val);
|
|
#endif
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool is_nan(float p_val) {
|
|
#ifdef _MSC_VER
|
|
return _isnan(p_val);
|
|
#elif defined(__GNUC__) && __GNUC__ < 6
|
|
union {
|
|
uint32_t u;
|
|
float f;
|
|
} ieee754;
|
|
ieee754.f = p_val;
|
|
// -----------------------------------
|
|
// (single-precision floating-point)
|
|
// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
|
|
// : (> 0x7f800000)
|
|
// where,
|
|
// s : sign
|
|
// x : non-zero number
|
|
// -----------------------------------
|
|
return ((ieee754.u & 0x7fffffff) > 0x7f800000);
|
|
#else
|
|
return isnan(p_val);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
#endif // PANDEMONIUM_MATH_H
|