mirror of
https://github.com/Relintai/gdnative_cpp.git
synced 2024-11-14 10:27:17 +01:00
302 lines
9.6 KiB
C++
302 lines
9.6 KiB
C++
/*************************************************************************/
|
|
/* Transform.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PANDEMONIUM ENGINE */
|
|
/* https://pandemoniumengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Pandemonium Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "transform.h"
|
|
|
|
#include "basis.h"
|
|
|
|
#include "aabb.h"
|
|
#include "plane.h"
|
|
|
|
#include "quaternion.h"
|
|
|
|
const Transform Transform::IDENTITY = Transform();
|
|
const Transform Transform::FLIP_X = Transform(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0);
|
|
const Transform Transform::FLIP_Y = Transform(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0);
|
|
const Transform Transform::FLIP_Z = Transform(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0);
|
|
|
|
Transform Transform::inverse_xform(const Transform &t) const {
|
|
Vector3 v = t.origin - origin;
|
|
return Transform(basis.transpose_xform(t.basis),
|
|
basis.xform(v));
|
|
}
|
|
|
|
void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {
|
|
basis.elements[0][0] = xx;
|
|
basis.elements[0][1] = xy;
|
|
basis.elements[0][2] = xz;
|
|
basis.elements[1][0] = yx;
|
|
basis.elements[1][1] = yy;
|
|
basis.elements[1][2] = yz;
|
|
basis.elements[2][0] = zx;
|
|
basis.elements[2][1] = zy;
|
|
basis.elements[2][2] = zz;
|
|
origin.x = tx;
|
|
origin.y = ty;
|
|
origin.z = tz;
|
|
}
|
|
|
|
Vector3 Transform::xform(const Vector3 &p_vector) const {
|
|
return Vector3(
|
|
basis.elements[0].dot(p_vector) + origin.x,
|
|
basis.elements[1].dot(p_vector) + origin.y,
|
|
basis.elements[2].dot(p_vector) + origin.z);
|
|
}
|
|
Vector3 Transform::xform_inv(const Vector3 &p_vector) const {
|
|
Vector3 v = p_vector - origin;
|
|
|
|
return Vector3(
|
|
(basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
|
|
(basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
|
|
(basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
|
|
}
|
|
|
|
Plane Transform::xform(const Plane &p_plane) const {
|
|
Vector3 point = p_plane.normal * p_plane.d;
|
|
Vector3 point_dir = point + p_plane.normal;
|
|
point = xform(point);
|
|
point_dir = xform(point_dir);
|
|
|
|
Vector3 normal = point_dir - point;
|
|
normal.normalize();
|
|
real_t d = normal.dot(point);
|
|
|
|
return Plane(normal, d);
|
|
}
|
|
Plane Transform::xform_inv(const Plane &p_plane) const {
|
|
Vector3 point = p_plane.normal * p_plane.d;
|
|
Vector3 point_dir = point + p_plane.normal;
|
|
point = xform_inv(point);
|
|
point_dir = xform_inv(point_dir);
|
|
|
|
Vector3 normal = point_dir - point;
|
|
normal.normalize();
|
|
real_t d = normal.dot(point);
|
|
|
|
return Plane(normal, d);
|
|
}
|
|
|
|
AABB Transform::xform(const AABB &p_aabb) const {
|
|
/* define vertices */
|
|
Vector3 x = basis.get_axis(0) * p_aabb.size.x;
|
|
Vector3 y = basis.get_axis(1) * p_aabb.size.y;
|
|
Vector3 z = basis.get_axis(2) * p_aabb.size.z;
|
|
Vector3 pos = xform(p_aabb.position);
|
|
// could be even further optimized
|
|
AABB new_aabb;
|
|
new_aabb.position = pos;
|
|
new_aabb.expand_to(pos + x);
|
|
new_aabb.expand_to(pos + y);
|
|
new_aabb.expand_to(pos + z);
|
|
new_aabb.expand_to(pos + x + y);
|
|
new_aabb.expand_to(pos + x + z);
|
|
new_aabb.expand_to(pos + y + z);
|
|
new_aabb.expand_to(pos + x + y + z);
|
|
return new_aabb;
|
|
}
|
|
AABB Transform::xform_inv(const AABB &p_aabb) const {
|
|
/* define vertices */
|
|
Vector3 vertices[8] = {
|
|
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
|
|
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
|
|
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
|
|
Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
|
|
};
|
|
|
|
AABB ret;
|
|
|
|
ret.position = xform_inv(vertices[0]);
|
|
|
|
for (int i = 1; i < 8; i++) {
|
|
ret.expand_to(xform_inv(vertices[i]));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void Transform::affine_invert() {
|
|
basis.invert();
|
|
origin = basis.xform(-origin);
|
|
}
|
|
|
|
Transform Transform::affine_inverse() const {
|
|
Transform ret = *this;
|
|
ret.affine_invert();
|
|
return ret;
|
|
}
|
|
|
|
void Transform::invert() {
|
|
basis.transpose();
|
|
origin = basis.xform(-origin);
|
|
}
|
|
|
|
Transform Transform::inverse() const {
|
|
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
|
|
// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
|
|
Transform ret = *this;
|
|
ret.invert();
|
|
return ret;
|
|
}
|
|
|
|
void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {
|
|
*this = rotated(p_axis, p_phi);
|
|
}
|
|
|
|
Transform Transform::rotated(const Vector3 &p_axis, real_t p_phi) const {
|
|
return Transform(Basis(p_axis, p_phi), Vector3()) * (*this);
|
|
}
|
|
|
|
void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
|
|
basis.rotate(p_axis, p_phi);
|
|
}
|
|
|
|
Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
|
|
Transform t = *this;
|
|
t.set_look_at(origin, p_target, p_up);
|
|
return t;
|
|
}
|
|
|
|
void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
|
|
// Reference: MESA source code
|
|
Vector3 v_x, v_y, v_z;
|
|
|
|
/* Make rotation matrix */
|
|
|
|
/* Z vector */
|
|
v_z = p_eye - p_target;
|
|
|
|
v_z.normalize();
|
|
|
|
v_y = p_up;
|
|
|
|
v_x = v_y.cross(v_z);
|
|
|
|
/* Recompute Y = Z cross X */
|
|
v_y = v_z.cross(v_x);
|
|
|
|
v_x.normalize();
|
|
v_y.normalize();
|
|
|
|
basis.set_axis(0, v_x);
|
|
basis.set_axis(1, v_y);
|
|
basis.set_axis(2, v_z);
|
|
origin = p_eye;
|
|
}
|
|
|
|
Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {
|
|
/* not sure if very "efficient" but good enough? */
|
|
|
|
Vector3 src_scale = basis.get_scale();
|
|
Quaternion src_rot = basis;
|
|
Vector3 src_loc = origin;
|
|
|
|
Vector3 dst_scale = p_transform.basis.get_scale();
|
|
Quaternion dst_rot = p_transform.basis;
|
|
Vector3 dst_loc = p_transform.origin;
|
|
|
|
Transform dst;
|
|
dst.basis = src_rot.slerp(dst_rot, p_c);
|
|
dst.basis.scale(src_scale.linear_interpolate(dst_scale, p_c));
|
|
dst.origin = src_loc.linear_interpolate(dst_loc, p_c);
|
|
|
|
return dst;
|
|
}
|
|
|
|
void Transform::scale(const Vector3 &p_scale) {
|
|
basis.scale(p_scale);
|
|
origin *= p_scale;
|
|
}
|
|
|
|
Transform Transform::scaled(const Vector3 &p_scale) const {
|
|
Transform t = *this;
|
|
t.scale(p_scale);
|
|
return t;
|
|
}
|
|
|
|
void Transform::scale_basis(const Vector3 &p_scale) {
|
|
basis.scale(p_scale);
|
|
}
|
|
|
|
void Transform::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
|
|
translate(Vector3(p_tx, p_ty, p_tz));
|
|
}
|
|
void Transform::translate(const Vector3 &p_translation) {
|
|
for (int i = 0; i < 3; i++) {
|
|
origin[i] += basis.elements[i].dot(p_translation);
|
|
}
|
|
}
|
|
|
|
Transform Transform::translated(const Vector3 &p_translation) const {
|
|
Transform t = *this;
|
|
t.translate(p_translation);
|
|
return t;
|
|
}
|
|
|
|
void Transform::orthonormalize() {
|
|
basis.orthonormalize();
|
|
}
|
|
|
|
Transform Transform::orthonormalized() const {
|
|
Transform _copy = *this;
|
|
_copy.orthonormalize();
|
|
return _copy;
|
|
}
|
|
|
|
bool Transform::operator==(const Transform &p_transform) const {
|
|
return (basis == p_transform.basis && origin == p_transform.origin);
|
|
}
|
|
bool Transform::operator!=(const Transform &p_transform) const {
|
|
return (basis != p_transform.basis || origin != p_transform.origin);
|
|
}
|
|
|
|
void Transform::operator*=(const Transform &p_transform) {
|
|
origin = xform(p_transform.origin);
|
|
basis *= p_transform.basis;
|
|
}
|
|
|
|
Transform Transform::operator*(const Transform &p_transform) const {
|
|
Transform t = *this;
|
|
t *= p_transform;
|
|
return t;
|
|
}
|
|
|
|
Transform::operator String() const {
|
|
return basis.operator String() + " - " + origin.operator String();
|
|
}
|
|
|
|
Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) {
|
|
basis = p_basis;
|
|
origin = p_origin;
|
|
}
|