/*************************************************************************/ /* Transform.cpp */ /*************************************************************************/ /* This file is part of: */ /* PANDEMONIUM ENGINE */ /* https://pandemoniumengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Pandemonium Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "transform.h" #include "basis.h" #include "aabb.h" #include "plane.h" #include "quaternion.h" const Transform Transform::IDENTITY = Transform(); const Transform Transform::FLIP_X = Transform(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0); const Transform Transform::FLIP_Y = Transform(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0); const Transform Transform::FLIP_Z = Transform(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0); Transform Transform::inverse_xform(const Transform &t) const { Vector3 v = t.origin - origin; return Transform(basis.transpose_xform(t.basis), basis.xform(v)); } void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) { basis.elements[0][0] = xx; basis.elements[0][1] = xy; basis.elements[0][2] = xz; basis.elements[1][0] = yx; basis.elements[1][1] = yy; basis.elements[1][2] = yz; basis.elements[2][0] = zx; basis.elements[2][1] = zy; basis.elements[2][2] = zz; origin.x = tx; origin.y = ty; origin.z = tz; } Vector3 Transform::xform(const Vector3 &p_vector) const { return Vector3( basis.elements[0].dot(p_vector) + origin.x, basis.elements[1].dot(p_vector) + origin.y, basis.elements[2].dot(p_vector) + origin.z); } Vector3 Transform::xform_inv(const Vector3 &p_vector) const { Vector3 v = p_vector - origin; return Vector3( (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z), (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z), (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z)); } Plane Transform::xform(const Plane &p_plane) const { Vector3 point = p_plane.normal * p_plane.d; Vector3 point_dir = point + p_plane.normal; point = xform(point); point_dir = xform(point_dir); Vector3 normal = point_dir - point; normal.normalize(); real_t d = normal.dot(point); return Plane(normal, d); } Plane Transform::xform_inv(const Plane &p_plane) const { Vector3 point = p_plane.normal * p_plane.d; Vector3 point_dir = point + p_plane.normal; point = xform_inv(point); point_dir = xform_inv(point_dir); Vector3 normal = point_dir - point; normal.normalize(); real_t d = normal.dot(point); return Plane(normal, d); } AABB Transform::xform(const AABB &p_aabb) const { /* define vertices */ Vector3 x = basis.get_axis(0) * p_aabb.size.x; Vector3 y = basis.get_axis(1) * p_aabb.size.y; Vector3 z = basis.get_axis(2) * p_aabb.size.z; Vector3 pos = xform(p_aabb.position); // could be even further optimized AABB new_aabb; new_aabb.position = pos; new_aabb.expand_to(pos + x); new_aabb.expand_to(pos + y); new_aabb.expand_to(pos + z); new_aabb.expand_to(pos + x + y); new_aabb.expand_to(pos + x + z); new_aabb.expand_to(pos + y + z); new_aabb.expand_to(pos + x + y + z); return new_aabb; } AABB Transform::xform_inv(const AABB &p_aabb) const { /* define vertices */ Vector3 vertices[8] = { Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z), Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z) }; AABB ret; ret.position = xform_inv(vertices[0]); for (int i = 1; i < 8; i++) { ret.expand_to(xform_inv(vertices[i])); } return ret; } void Transform::affine_invert() { basis.invert(); origin = basis.xform(-origin); } Transform Transform::affine_inverse() const { Transform ret = *this; ret.affine_invert(); return ret; } void Transform::invert() { basis.transpose(); origin = basis.xform(-origin); } Transform Transform::inverse() const { // FIXME: this function assumes the basis is a rotation matrix, with no scaling. // Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. Transform ret = *this; ret.invert(); return ret; } void Transform::rotate(const Vector3 &p_axis, real_t p_phi) { *this = rotated(p_axis, p_phi); } Transform Transform::rotated(const Vector3 &p_axis, real_t p_phi) const { return Transform(Basis(p_axis, p_phi), Vector3()) * (*this); } void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) { basis.rotate(p_axis, p_phi); } Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const { Transform t = *this; t.set_look_at(origin, p_target, p_up); return t; } void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) { // Reference: MESA source code Vector3 v_x, v_y, v_z; /* Make rotation matrix */ /* Z vector */ v_z = p_eye - p_target; v_z.normalize(); v_y = p_up; v_x = v_y.cross(v_z); /* Recompute Y = Z cross X */ v_y = v_z.cross(v_x); v_x.normalize(); v_y.normalize(); basis.set_axis(0, v_x); basis.set_axis(1, v_y); basis.set_axis(2, v_z); origin = p_eye; } Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const { /* not sure if very "efficient" but good enough? */ Vector3 src_scale = basis.get_scale(); Quaternion src_rot = basis; Vector3 src_loc = origin; Vector3 dst_scale = p_transform.basis.get_scale(); Quaternion dst_rot = p_transform.basis; Vector3 dst_loc = p_transform.origin; Transform dst; dst.basis = src_rot.slerp(dst_rot, p_c); dst.basis.scale(src_scale.linear_interpolate(dst_scale, p_c)); dst.origin = src_loc.linear_interpolate(dst_loc, p_c); return dst; } void Transform::scale(const Vector3 &p_scale) { basis.scale(p_scale); origin *= p_scale; } Transform Transform::scaled(const Vector3 &p_scale) const { Transform t = *this; t.scale(p_scale); return t; } void Transform::scale_basis(const Vector3 &p_scale) { basis.scale(p_scale); } void Transform::translate(real_t p_tx, real_t p_ty, real_t p_tz) { translate(Vector3(p_tx, p_ty, p_tz)); } void Transform::translate(const Vector3 &p_translation) { for (int i = 0; i < 3; i++) { origin[i] += basis.elements[i].dot(p_translation); } } Transform Transform::translated(const Vector3 &p_translation) const { Transform t = *this; t.translate(p_translation); return t; } void Transform::orthonormalize() { basis.orthonormalize(); } Transform Transform::orthonormalized() const { Transform _copy = *this; _copy.orthonormalize(); return _copy; } bool Transform::operator==(const Transform &p_transform) const { return (basis == p_transform.basis && origin == p_transform.origin); } bool Transform::operator!=(const Transform &p_transform) const { return (basis != p_transform.basis || origin != p_transform.origin); } void Transform::operator*=(const Transform &p_transform) { origin = xform(p_transform.origin); basis *= p_transform.basis; } Transform Transform::operator*(const Transform &p_transform) const { Transform t = *this; t *= p_transform; return t; } Transform::operator String() const { return basis.operator String() + " - " + origin.operator String(); } Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) { basis = p_basis; origin = p_origin; }