mirror of
https://github.com/Relintai/codot.git
synced 2025-04-22 05:41:17 +02:00
260 lines
9.7 KiB
C
260 lines
9.7 KiB
C
/*************************************************************************/
|
|
/* quat.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "quat.h"
|
|
|
|
//#include "core/math/basis.h"
|
|
//#include "core/print_string.h"
|
|
|
|
void quat_set_axis_angle(Quat *self, const Vector3 *axis, const real_t angle) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized.");
|
|
#endif
|
|
real_t d = vector3_length(axis);
|
|
if (d == 0) {
|
|
quat_set(self, 0, 0, 0, 0);
|
|
} else {
|
|
real_t sin_angle = math_sinf(angle * 0.5f);
|
|
real_t cos_angle = math_cosf(angle * 0.5f);
|
|
real_t s = sin_angle / d;
|
|
quat_set(self, axis->x * s, axis->y * s, axis->z * s, cos_angle);
|
|
}
|
|
}
|
|
|
|
Quat quat_create_ae(const Vector3 *axis, const real_t angle) {
|
|
Quat q;
|
|
quat_set_axis_angle(&q, axis, angle);
|
|
return q;
|
|
}
|
|
|
|
Quat quat_create_euler(const Vector3 *euler) {
|
|
Quat q;
|
|
quat_set_euler(&q, euler);
|
|
return q;
|
|
}
|
|
|
|
real_t quat_angle_to(const Quat *self, const Quat *p_to) {
|
|
real_t d = quat_dot(self, p_to);
|
|
return math_acosf(CLAMP(d * d * 2 - 1, -1, 1));
|
|
}
|
|
|
|
// set_euler_xyz expects a vector containing the Euler angles in the format
|
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses XYZ convention (Z is the first rotation).
|
|
void quat_set_euler_xyz(Quat *self, const Vector3 *p_euler) {
|
|
real_t half_a1 = p_euler->x * 0.5f;
|
|
real_t half_a2 = p_euler->y * 0.5f;
|
|
real_t half_a3 = p_euler->z * 0.5f;
|
|
|
|
// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
|
|
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
|
|
// a3 is the angle of the first rotation, following the notation in this reference.
|
|
|
|
real_t cos_a1 = math_cosf(half_a1);
|
|
real_t sin_a1 = math_sinf(half_a1);
|
|
real_t cos_a2 = math_cosf(half_a2);
|
|
real_t sin_a2 = math_sinf(half_a2);
|
|
real_t cos_a3 = math_cosf(half_a3);
|
|
real_t sin_a3 = math_sinf(half_a3);
|
|
|
|
quat_set(self,
|
|
sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
|
|
-sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
|
|
sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
|
|
-sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
|
|
}
|
|
|
|
// get_euler_xyz returns a vector containing the Euler angles in the format
|
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses XYZ convention (Z is the first rotation).
|
|
Vector3 quat_get_euler_xyz(const Quat *self) {
|
|
//Basis m(*this);
|
|
//return m.get_euler_xyz();
|
|
|
|
return vector3_create(0, 0, 0);
|
|
}
|
|
|
|
// set_euler_yxz expects a vector containing the Euler angles in the format
|
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses YXZ convention (Z is the first rotation).
|
|
void quat_set_euler_yxz(Quat *self, const Vector3 *p_euler) {
|
|
real_t half_a1 = p_euler->y * 0.5f;
|
|
real_t half_a2 = p_euler->x * 0.5f;
|
|
real_t half_a3 = p_euler->z * 0.5f;
|
|
|
|
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
|
|
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
|
|
// a3 is the angle of the first rotation, following the notation in this reference.
|
|
|
|
real_t cos_a1 = math_cosf(half_a1);
|
|
real_t sin_a1 = math_sinf(half_a1);
|
|
real_t cos_a2 = math_cosf(half_a2);
|
|
real_t sin_a2 = math_sinf(half_a2);
|
|
real_t cos_a3 = math_cosf(half_a3);
|
|
real_t sin_a3 = math_sinf(half_a3);
|
|
|
|
quat_set(self,
|
|
sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
|
|
sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
|
|
-sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
|
|
sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
|
|
}
|
|
|
|
// get_euler_yxz returns a vector containing the Euler angles in the format
|
|
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
|
// and similar for other axes.
|
|
// This implementation uses YXZ convention (Z is the first rotation).
|
|
Vector3 quat_get_euler_yxz(const Quat *self) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
|
|
#endif
|
|
//Basis m(*this);
|
|
//return m.get_euler_yxz();
|
|
|
|
return vector3_create(0, 0, 0);
|
|
}
|
|
|
|
bool quat_is_equal_approx(const Quat *self, const Quat *p_quat) {
|
|
return math_is_equal_approxf(self->x, p_quat->x) && math_is_equal_approxf(self->y, p_quat->y) && math_is_equal_approxf(self->z, p_quat->z) && math_is_equal_approxf(self->w, p_quat->w);
|
|
}
|
|
|
|
real_t quat_length(const Quat *self) {
|
|
return math_sqrtf(quat_length_squared(self));
|
|
}
|
|
|
|
void quat_normalize(Quat *self) {
|
|
quat_div_eqs(self, quat_length(self));
|
|
}
|
|
|
|
Quat quat_normalized(const Quat *self) {
|
|
return quat_divs(self, quat_length(self));
|
|
}
|
|
|
|
bool quat_is_normalized(const Quat *self) {
|
|
return math_is_equal_approxft(quat_length_squared(self), 1, (real_t)UNIT_EPSILON); //use less epsilon
|
|
}
|
|
|
|
Quat quat_inverse(const Quat *self) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized.");
|
|
#endif
|
|
return quat_creater(-self->x, -self->y, -self->z, self->w);
|
|
}
|
|
|
|
Quat quat_slerp(const Quat *self, const Quat *p_to, const real_t p_weight) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
|
|
//ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
|
#endif
|
|
Quat to1;
|
|
real_t omega, cosom, sinom, scale0, scale1;
|
|
|
|
// calc cosine
|
|
cosom = quat_dot(self, p_to);
|
|
|
|
// adjust signs (if necessary)
|
|
if (cosom < 0) {
|
|
cosom = -cosom;
|
|
to1.x = -p_to->x;
|
|
to1.y = -p_to->y;
|
|
to1.z = -p_to->z;
|
|
to1.w = -p_to->w;
|
|
} else {
|
|
to1.x = p_to->x;
|
|
to1.y = p_to->y;
|
|
to1.z = p_to->z;
|
|
to1.w = p_to->w;
|
|
}
|
|
|
|
// calculate coefficients
|
|
|
|
if ((1 - cosom) > (real_t)CMP_EPSILON) {
|
|
// standard case (slerp)
|
|
omega = math_acosf(cosom);
|
|
sinom = math_sinf(omega);
|
|
scale0 = math_sinf((1 - p_weight) * omega) / sinom;
|
|
scale1 = math_sinf(p_weight * omega) / sinom;
|
|
} else {
|
|
// "from" and "to" quaternions are very close
|
|
// ... so we can do a linear interpolation
|
|
scale0 = 1 - p_weight;
|
|
scale1 = p_weight;
|
|
}
|
|
// calculate final values
|
|
return quat_creater(
|
|
scale0 * self->x + scale1 * to1.x,
|
|
scale0 * self->y + scale1 * to1.y,
|
|
scale0 * self->z + scale1 * to1.z,
|
|
scale0 * self->w + scale1 * to1.w);
|
|
}
|
|
|
|
Quat quat_slerpni(const Quat *self, const Quat *p_to, const real_t p_weight) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
|
|
//ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
|
#endif
|
|
real_t dot = quat_dot(self, p_to);
|
|
|
|
if (math_absf(dot) > 0.9999f) {
|
|
return quat_createq(self);
|
|
}
|
|
|
|
real_t theta = math_acosf(dot),
|
|
sinT = 1 / math_sinf(theta),
|
|
newFactor = math_sinf(p_weight * theta) * sinT,
|
|
invFactor = math_sinf((1 - p_weight) * theta) * sinT;
|
|
|
|
return quat_creater(invFactor * self->x + newFactor * p_to->x,
|
|
invFactor * self->y + newFactor * p_to->y,
|
|
invFactor * self->z + newFactor * p_to->z,
|
|
invFactor * self->w + newFactor * p_to->w);
|
|
}
|
|
|
|
Quat quat_cubic_slerp(const Quat *self, const Quat *p_b, const Quat *p_pre_a, const Quat *p_post_b, const real_t p_weight) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
|
|
//ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
|
|
#endif
|
|
//the only way to do slerp :|
|
|
real_t t2 = (1 - p_weight) * p_weight * 2;
|
|
Quat sp = quat_slerp(self, p_b, p_weight);
|
|
Quat sq = quat_slerpni(p_pre_a, p_post_b, p_weight);
|
|
return quat_slerpni(&sp, &sq, t2);
|
|
}
|
|
|
|
/*
|
|
quat_operator String() const {
|
|
return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
|
|
}
|
|
*/
|