/*************************************************************************/ /* quat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "quat.h" //#include "core/math/basis.h" //#include "core/print_string.h" void quat_set_axis_angle(Quat *self, const Vector3 *axis, const real_t angle) { #ifdef MATH_CHECKS //ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized."); #endif real_t d = vector3_length(axis); if (d == 0) { quat_set(self, 0, 0, 0, 0); } else { real_t sin_angle = math_sinf(angle * 0.5f); real_t cos_angle = math_cosf(angle * 0.5f); real_t s = sin_angle / d; quat_set(self, axis->x * s, axis->y * s, axis->z * s, cos_angle); } } Quat quat_create_ae(const Vector3 *axis, const real_t angle) { Quat q; quat_set_axis_angle(&q, axis, angle); return q; } Quat quat_create_euler(const Vector3 *euler) { Quat q; quat_set_euler(&q, euler); return q; } real_t quat_angle_to(const Quat *self, const Quat *p_to) { real_t d = quat_dot(self, p_to); return math_acosf(CLAMP(d * d * 2 - 1, -1, 1)); } // set_euler_xyz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). void quat_set_euler_xyz(Quat *self, const Vector3 *p_euler) { real_t half_a1 = p_euler->x * 0.5f; real_t half_a2 = p_euler->y * 0.5f; real_t half_a3 = p_euler->z * 0.5f; // R = X(a1).Y(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = math_cosf(half_a1); real_t sin_a1 = math_sinf(half_a1); real_t cos_a2 = math_cosf(half_a2); real_t sin_a2 = math_sinf(half_a2); real_t cos_a3 = math_cosf(half_a3); real_t sin_a3 = math_sinf(half_a3); quat_set(self, sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 quat_get_euler_xyz(const Quat *self) { //Basis m(*this); //return m.get_euler_xyz(); return vector3_create(0, 0, 0); } // set_euler_yxz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). void quat_set_euler_yxz(Quat *self, const Vector3 *p_euler) { real_t half_a1 = p_euler->y * 0.5f; real_t half_a2 = p_euler->x * 0.5f; real_t half_a3 = p_euler->z * 0.5f; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = math_cosf(half_a1); real_t sin_a1 = math_sinf(half_a1); real_t cos_a2 = math_cosf(half_a2); real_t sin_a2 = math_sinf(half_a2); real_t cos_a3 = math_cosf(half_a3); real_t sin_a3 = math_sinf(half_a3); quat_set(self, sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Vector3 quat_get_euler_yxz(const Quat *self) { #ifdef MATH_CHECKS //ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif //Basis m(*this); //return m.get_euler_yxz(); return vector3_create(0, 0, 0); } bool quat_is_equal_approx(const Quat *self, const Quat *p_quat) { return math_is_equal_approxf(self->x, p_quat->x) && math_is_equal_approxf(self->y, p_quat->y) && math_is_equal_approxf(self->z, p_quat->z) && math_is_equal_approxf(self->w, p_quat->w); } real_t quat_length(const Quat *self) { return math_sqrtf(quat_length_squared(self)); } void quat_normalize(Quat *self) { quat_div_eqs(self, quat_length(self)); } Quat quat_normalized(const Quat *self) { return quat_divs(self, quat_length(self)); } bool quat_is_normalized(const Quat *self) { return math_is_equal_approxft(quat_length_squared(self), 1, (real_t)UNIT_EPSILON); //use less epsilon } Quat quat_inverse(const Quat *self) { #ifdef MATH_CHECKS //ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized."); #endif return quat_creater(-self->x, -self->y, -self->z, self->w); } Quat quat_slerp(const Quat *self, const Quat *p_to, const real_t p_weight) { #ifdef MATH_CHECKS //ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); //ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = quat_dot(self, p_to); // adjust signs (if necessary) if (cosom < 0) { cosom = -cosom; to1.x = -p_to->x; to1.y = -p_to->y; to1.z = -p_to->z; to1.w = -p_to->w; } else { to1.x = p_to->x; to1.y = p_to->y; to1.z = p_to->z; to1.w = p_to->w; } // calculate coefficients if ((1 - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = math_acosf(cosom); sinom = math_sinf(omega); scale0 = math_sinf((1 - p_weight) * omega) / sinom; scale1 = math_sinf(p_weight * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1 - p_weight; scale1 = p_weight; } // calculate final values return quat_creater( scale0 * self->x + scale1 * to1.x, scale0 * self->y + scale1 * to1.y, scale0 * self->z + scale1 * to1.z, scale0 * self->w + scale1 * to1.w); } Quat quat_slerpni(const Quat *self, const Quat *p_to, const real_t p_weight) { #ifdef MATH_CHECKS //ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); //ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif real_t dot = quat_dot(self, p_to); if (math_absf(dot) > 0.9999f) { return quat_createq(self); } real_t theta = math_acosf(dot), sinT = 1 / math_sinf(theta), newFactor = math_sinf(p_weight * theta) * sinT, invFactor = math_sinf((1 - p_weight) * theta) * sinT; return quat_creater(invFactor * self->x + newFactor * p_to->x, invFactor * self->y + newFactor * p_to->y, invFactor * self->z + newFactor * p_to->z, invFactor * self->w + newFactor * p_to->w); } Quat quat_cubic_slerp(const Quat *self, const Quat *p_b, const Quat *p_pre_a, const Quat *p_post_b, const real_t p_weight) { #ifdef MATH_CHECKS //ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized."); //ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized."); #endif //the only way to do slerp :| real_t t2 = (1 - p_weight) * p_weight * 2; Quat sp = quat_slerp(self, p_b, p_weight); Quat sq = quat_slerpni(p_pre_a, p_post_b, p_weight); return quat_slerpni(&sp, &sq, t2); } /* quat_operator String() const { return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); } */