MLPP/README.md
2021-05-27 20:32:49 -07:00

94 lines
2.8 KiB
Markdown

# ML++
Machine learning is a vast and exiciting discipline, garnering attention from specialists of many fields. Unfortunately, for C++ programmers and enthusiasts, there appears to be a lack of support for this magnificient language in the field of machine learning. As a consequence, this library was created in order to fill that void and give C++ a true foothold in the ML sphere to act as a crossroad between low level developers and machine learning engineers.
<p align="center">
<img src="https://user-images.githubusercontent.com/78002988/119920911-f3338d00-bf21-11eb-89b3-c84bf7c9f4ac.gif"
width = 600 height = 400>
</p>
## Contents of the Library
1. ***Regression***
1. Linear Regression
2. Logistic Regression
3. Softmax Regression
4. Exponential Regression
5. Probit Regression
6. CLogLog Regression
2. ***Deep, Dynamically Sized Neural Networks***
1. Possible Activation Functions
- Linear
- Sigmoid
- Swish
- Softplus
- CLogLog
- Gaussian CDF
- GELU
- Unit Step
- Sinh
- Cosh
- Tanh
- Csch
- Sech
- Coth
- Arsinh
- Arcosh
- Artanh
- Arcsch
- Arsech
- Arcoth
2. Possible Loss Functions
- MSE
- RMSE
- MAE
- MBE
- Log Loss
- Cross Entropy
- Hinge Loss
3. Possible Regularization Methods
- Lasso
- Ridge
- ElasticNet
4. Possible Weight Initialization Methods
- Uniform
- Xavier Normal
- Xavier Uniform
- He Normal
- He Uniform
3. ***Prebuilt Neural Networks***
1. Multilayer Peceptron
2. Autoencoder
3. Softmax Network
4. ***Natural Language Processing***
1. Word2Vec (Continous Bag of Words, Skip-N Gram)
2. Stemming
3. Bag of Words
4. TFIDF
5. Tokenization
6. Auxiliary Text Processing Functions
5. ***Computer Vision***
1. The Convolution Operation
2. Max, Min, Average Pooling
3. Global Max, Min, Average Pooling
4. Prebuilt Feature Detectors
- Horizontal/Vertical Prewitt Filter
- Horizontal/Vertical Sobel Filter
- Horizontal/Vertical Scharr Filter
- Horizontal/Vertical Roberts Filter
6. ***Principal Component Analysis***
7. ***Naive Bayes Classifiers***
1. Multinomial Naive Bayes
2. Bernoulli Naive Bayes
3. Gaussian Naive Bayes
8. ***K-Means***
9. ***k-Nearest Neighbors***
10. ***Outlier Finder (Using z-scores)***
11. ***Linear Algebra Module***
12. ***Statistics Module***
13. ***Data Processing Module***
1. Setting and Printing Datasets
2. Feature Scaling
3. Mean Normalization
4. One Hot Representation
5. Reverse One Hot Representation