mirror of
https://github.com/Relintai/sfw.git
synced 2025-01-17 14:47:18 +01:00
More organization.
This commit is contained in:
parent
708b21a447
commit
1f2c5ac185
@ -32,9 +32,9 @@
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
#include "core/math/plane.h"
|
||||
#include "core/math/vector3.h"
|
||||
#include "math_defs.h"
|
||||
#include "plane.h"
|
||||
#include "vector3.h"
|
||||
|
||||
/**
|
||||
* AABB / AABB (Axis Aligned Bounding Box)
|
||||
|
@ -32,9 +32,9 @@
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "core/math/quaternion.h"
|
||||
#include "core/math/vector3.h"
|
||||
#include "core/math/vector3i.h"
|
||||
#include "quaternion.h"
|
||||
#include "vector3.h"
|
||||
#include "vector3i.h"
|
||||
|
||||
struct _NO_DISCARD_CLASS_ Basis {
|
||||
Vector3 rows[3] = {
|
||||
|
@ -1,162 +0,0 @@
|
||||
|
||||
#ifndef COLOR_NAMES_INC_H
|
||||
#define COLOR_NAMES_INC_H
|
||||
|
||||
// Names from https://en.wikipedia.org/wiki/X11_color_names
|
||||
|
||||
#include "core/containers/rb_map.h"
|
||||
|
||||
static RBMap<String, Color> _named_colors;
|
||||
static void _populate_named_colors() {
|
||||
if (!_named_colors.empty()) {
|
||||
return;
|
||||
}
|
||||
_named_colors.insert("aliceblue", Color(0.94, 0.97, 1.00));
|
||||
_named_colors.insert("antiquewhite", Color(0.98, 0.92, 0.84));
|
||||
_named_colors.insert("aqua", Color(0.00, 1.00, 1.00));
|
||||
_named_colors.insert("aquamarine", Color(0.50, 1.00, 0.83));
|
||||
_named_colors.insert("azure", Color(0.94, 1.00, 1.00));
|
||||
_named_colors.insert("beige", Color(0.96, 0.96, 0.86));
|
||||
_named_colors.insert("bisque", Color(1.00, 0.89, 0.77));
|
||||
_named_colors.insert("black", Color(0.00, 0.00, 0.00));
|
||||
_named_colors.insert("blanchedalmond", Color(1.00, 0.92, 0.80));
|
||||
_named_colors.insert("blue", Color(0.00, 0.00, 1.00));
|
||||
_named_colors.insert("blueviolet", Color(0.54, 0.17, 0.89));
|
||||
_named_colors.insert("brown", Color(0.65, 0.16, 0.16));
|
||||
_named_colors.insert("burlywood", Color(0.87, 0.72, 0.53));
|
||||
_named_colors.insert("cadetblue", Color(0.37, 0.62, 0.63));
|
||||
_named_colors.insert("chartreuse", Color(0.50, 1.00, 0.00));
|
||||
_named_colors.insert("chocolate", Color(0.82, 0.41, 0.12));
|
||||
_named_colors.insert("coral", Color(1.00, 0.50, 0.31));
|
||||
_named_colors.insert("cornflower", Color(0.39, 0.58, 0.93));
|
||||
_named_colors.insert("cornsilk", Color(1.00, 0.97, 0.86));
|
||||
_named_colors.insert("crimson", Color(0.86, 0.08, 0.24));
|
||||
_named_colors.insert("cyan", Color(0.00, 1.00, 1.00));
|
||||
_named_colors.insert("darkblue", Color(0.00, 0.00, 0.55));
|
||||
_named_colors.insert("darkcyan", Color(0.00, 0.55, 0.55));
|
||||
_named_colors.insert("darkgoldenrod", Color(0.72, 0.53, 0.04));
|
||||
_named_colors.insert("darkgray", Color(0.66, 0.66, 0.66));
|
||||
_named_colors.insert("darkgreen", Color(0.00, 0.39, 0.00));
|
||||
_named_colors.insert("darkkhaki", Color(0.74, 0.72, 0.42));
|
||||
_named_colors.insert("darkmagenta", Color(0.55, 0.00, 0.55));
|
||||
_named_colors.insert("darkolivegreen", Color(0.33, 0.42, 0.18));
|
||||
_named_colors.insert("darkorange", Color(1.00, 0.55, 0.00));
|
||||
_named_colors.insert("darkorchid", Color(0.60, 0.20, 0.80));
|
||||
_named_colors.insert("darkred", Color(0.55, 0.00, 0.00));
|
||||
_named_colors.insert("darksalmon", Color(0.91, 0.59, 0.48));
|
||||
_named_colors.insert("darkseagreen", Color(0.56, 0.74, 0.56));
|
||||
_named_colors.insert("darkslateblue", Color(0.28, 0.24, 0.55));
|
||||
_named_colors.insert("darkslategray", Color(0.18, 0.31, 0.31));
|
||||
_named_colors.insert("darkturquoise", Color(0.00, 0.81, 0.82));
|
||||
_named_colors.insert("darkviolet", Color(0.58, 0.00, 0.83));
|
||||
_named_colors.insert("deeppink", Color(1.00, 0.08, 0.58));
|
||||
_named_colors.insert("deepskyblue", Color(0.00, 0.75, 1.00));
|
||||
_named_colors.insert("dimgray", Color(0.41, 0.41, 0.41));
|
||||
_named_colors.insert("dodgerblue", Color(0.12, 0.56, 1.00));
|
||||
_named_colors.insert("firebrick", Color(0.70, 0.13, 0.13));
|
||||
_named_colors.insert("floralwhite", Color(1.00, 0.98, 0.94));
|
||||
_named_colors.insert("forestgreen", Color(0.13, 0.55, 0.13));
|
||||
_named_colors.insert("fuchsia", Color(1.00, 0.00, 1.00));
|
||||
_named_colors.insert("gainsboro", Color(0.86, 0.86, 0.86));
|
||||
_named_colors.insert("ghostwhite", Color(0.97, 0.97, 1.00));
|
||||
_named_colors.insert("gold", Color(1.00, 0.84, 0.00));
|
||||
_named_colors.insert("goldenrod", Color(0.85, 0.65, 0.13));
|
||||
_named_colors.insert("gray", Color(0.75, 0.75, 0.75));
|
||||
_named_colors.insert("webgray", Color(0.50, 0.50, 0.50));
|
||||
_named_colors.insert("green", Color(0.00, 1.00, 0.00));
|
||||
_named_colors.insert("webgreen", Color(0.00, 0.50, 0.00));
|
||||
_named_colors.insert("greenyellow", Color(0.68, 1.00, 0.18));
|
||||
_named_colors.insert("honeydew", Color(0.94, 1.00, 0.94));
|
||||
_named_colors.insert("hotpink", Color(1.00, 0.41, 0.71));
|
||||
_named_colors.insert("indianred", Color(0.80, 0.36, 0.36));
|
||||
_named_colors.insert("indigo", Color(0.29, 0.00, 0.51));
|
||||
_named_colors.insert("ivory", Color(1.00, 1.00, 0.94));
|
||||
_named_colors.insert("khaki", Color(0.94, 0.90, 0.55));
|
||||
_named_colors.insert("lavender", Color(0.90, 0.90, 0.98));
|
||||
_named_colors.insert("lavenderblush", Color(1.00, 0.94, 0.96));
|
||||
_named_colors.insert("lawngreen", Color(0.49, 0.99, 0.00));
|
||||
_named_colors.insert("lemonchiffon", Color(1.00, 0.98, 0.80));
|
||||
_named_colors.insert("lightblue", Color(0.68, 0.85, 0.90));
|
||||
_named_colors.insert("lightcoral", Color(0.94, 0.50, 0.50));
|
||||
_named_colors.insert("lightcyan", Color(0.88, 1.00, 1.00));
|
||||
_named_colors.insert("lightgoldenrod", Color(0.98, 0.98, 0.82));
|
||||
_named_colors.insert("lightgray", Color(0.83, 0.83, 0.83));
|
||||
_named_colors.insert("lightgreen", Color(0.56, 0.93, 0.56));
|
||||
_named_colors.insert("lightpink", Color(1.00, 0.71, 0.76));
|
||||
_named_colors.insert("lightsalmon", Color(1.00, 0.63, 0.48));
|
||||
_named_colors.insert("lightseagreen", Color(0.13, 0.70, 0.67));
|
||||
_named_colors.insert("lightskyblue", Color(0.53, 0.81, 0.98));
|
||||
_named_colors.insert("lightslategray", Color(0.47, 0.53, 0.60));
|
||||
_named_colors.insert("lightsteelblue", Color(0.69, 0.77, 0.87));
|
||||
_named_colors.insert("lightyellow", Color(1.00, 1.00, 0.88));
|
||||
_named_colors.insert("lime", Color(0.00, 1.00, 0.00));
|
||||
_named_colors.insert("limegreen", Color(0.20, 0.80, 0.20));
|
||||
_named_colors.insert("linen", Color(0.98, 0.94, 0.90));
|
||||
_named_colors.insert("magenta", Color(1.00, 0.00, 1.00));
|
||||
_named_colors.insert("maroon", Color(0.69, 0.19, 0.38));
|
||||
_named_colors.insert("webmaroon", Color(0.50, 0.00, 0.00));
|
||||
_named_colors.insert("mediumaquamarine", Color(0.40, 0.80, 0.67));
|
||||
_named_colors.insert("mediumblue", Color(0.00, 0.00, 0.80));
|
||||
_named_colors.insert("mediumorchid", Color(0.73, 0.33, 0.83));
|
||||
_named_colors.insert("mediumpurple", Color(0.58, 0.44, 0.86));
|
||||
_named_colors.insert("mediumseagreen", Color(0.24, 0.70, 0.44));
|
||||
_named_colors.insert("mediumslateblue", Color(0.48, 0.41, 0.93));
|
||||
_named_colors.insert("mediumspringgreen", Color(0.00, 0.98, 0.60));
|
||||
_named_colors.insert("mediumturquoise", Color(0.28, 0.82, 0.80));
|
||||
_named_colors.insert("mediumvioletred", Color(0.78, 0.08, 0.52));
|
||||
_named_colors.insert("midnightblue", Color(0.10, 0.10, 0.44));
|
||||
_named_colors.insert("mintcream", Color(0.96, 1.00, 0.98));
|
||||
_named_colors.insert("mistyrose", Color(1.00, 0.89, 0.88));
|
||||
_named_colors.insert("moccasin", Color(1.00, 0.89, 0.71));
|
||||
_named_colors.insert("navajowhite", Color(1.00, 0.87, 0.68));
|
||||
_named_colors.insert("navyblue", Color(0.00, 0.00, 0.50));
|
||||
_named_colors.insert("oldlace", Color(0.99, 0.96, 0.90));
|
||||
_named_colors.insert("olive", Color(0.50, 0.50, 0.00));
|
||||
_named_colors.insert("olivedrab", Color(0.42, 0.56, 0.14));
|
||||
_named_colors.insert("orange", Color(1.00, 0.65, 0.00));
|
||||
_named_colors.insert("orangered", Color(1.00, 0.27, 0.00));
|
||||
_named_colors.insert("orchid", Color(0.85, 0.44, 0.84));
|
||||
_named_colors.insert("palegoldenrod", Color(0.93, 0.91, 0.67));
|
||||
_named_colors.insert("palegreen", Color(0.60, 0.98, 0.60));
|
||||
_named_colors.insert("paleturquoise", Color(0.69, 0.93, 0.93));
|
||||
_named_colors.insert("palevioletred", Color(0.86, 0.44, 0.58));
|
||||
_named_colors.insert("papayawhip", Color(1.00, 0.94, 0.84));
|
||||
_named_colors.insert("peachpuff", Color(1.00, 0.85, 0.73));
|
||||
_named_colors.insert("peru", Color(0.80, 0.52, 0.25));
|
||||
_named_colors.insert("pink", Color(1.00, 0.75, 0.80));
|
||||
_named_colors.insert("plum", Color(0.87, 0.63, 0.87));
|
||||
_named_colors.insert("powderblue", Color(0.69, 0.88, 0.90));
|
||||
_named_colors.insert("purple", Color(0.63, 0.13, 0.94));
|
||||
_named_colors.insert("webpurple", Color(0.50, 0.00, 0.50));
|
||||
_named_colors.insert("rebeccapurple", Color(0.40, 0.20, 0.60));
|
||||
_named_colors.insert("red", Color(1.00, 0.00, 0.00));
|
||||
_named_colors.insert("rosybrown", Color(0.74, 0.56, 0.56));
|
||||
_named_colors.insert("royalblue", Color(0.25, 0.41, 0.88));
|
||||
_named_colors.insert("saddlebrown", Color(0.55, 0.27, 0.07));
|
||||
_named_colors.insert("salmon", Color(0.98, 0.50, 0.45));
|
||||
_named_colors.insert("sandybrown", Color(0.96, 0.64, 0.38));
|
||||
_named_colors.insert("seagreen", Color(0.18, 0.55, 0.34));
|
||||
_named_colors.insert("seashell", Color(1.00, 0.96, 0.93));
|
||||
_named_colors.insert("sienna", Color(0.63, 0.32, 0.18));
|
||||
_named_colors.insert("silver", Color(0.75, 0.75, 0.75));
|
||||
_named_colors.insert("skyblue", Color(0.53, 0.81, 0.92));
|
||||
_named_colors.insert("slateblue", Color(0.42, 0.35, 0.80));
|
||||
_named_colors.insert("slategray", Color(0.44, 0.50, 0.56));
|
||||
_named_colors.insert("snow", Color(1.00, 0.98, 0.98));
|
||||
_named_colors.insert("springgreen", Color(0.00, 1.00, 0.50));
|
||||
_named_colors.insert("steelblue", Color(0.27, 0.51, 0.71));
|
||||
_named_colors.insert("tan", Color(0.82, 0.71, 0.55));
|
||||
_named_colors.insert("teal", Color(0.00, 0.50, 0.50));
|
||||
_named_colors.insert("thistle", Color(0.85, 0.75, 0.85));
|
||||
_named_colors.insert("tomato", Color(1.00, 0.39, 0.28));
|
||||
_named_colors.insert("turquoise", Color(0.25, 0.88, 0.82));
|
||||
_named_colors.insert("transparent", Color(1.00, 1.00, 1.00, 0.00));
|
||||
_named_colors.insert("violet", Color(0.93, 0.51, 0.93));
|
||||
_named_colors.insert("wheat", Color(0.96, 0.87, 0.70));
|
||||
_named_colors.insert("white", Color(1.00, 1.00, 1.00));
|
||||
_named_colors.insert("whitesmoke", Color(0.96, 0.96, 0.96));
|
||||
_named_colors.insert("yellow", Color(1.00, 1.00, 0.00));
|
||||
_named_colors.insert("yellowgreen", Color(0.60, 0.80, 0.20));
|
||||
}
|
||||
|
||||
#endif
|
@ -1,7 +1,7 @@
|
||||
#ifndef ERROR_MACROS_H
|
||||
#define ERROR_MACROS_H
|
||||
|
||||
#include "core/log/logger.h"
|
||||
#include "logger.h"
|
||||
#include "typedefs.h"
|
||||
|
||||
// Based on Godot Engine's error_macros.h
|
199
sfw/math_funcs.cpp
Normal file
199
sfw/math_funcs.cpp
Normal file
@ -0,0 +1,199 @@
|
||||
/*************************************************************************/
|
||||
/* math_funcs.cpp */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* PANDEMONIUM ENGINE */
|
||||
/* https://github.com/Relintai/pandemonium_engine */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2022-present Péter Magyar. */
|
||||
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
||||
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "math_funcs.h"
|
||||
|
||||
#include "core/error/error_macros.h"
|
||||
|
||||
RandomPCG Math::default_rand(RandomPCG::DEFAULT_SEED, RandomPCG::DEFAULT_INC);
|
||||
|
||||
#define PHI 0x9e3779b9
|
||||
|
||||
uint32_t Math::rand_from_seed(uint64_t *seed) {
|
||||
RandomPCG rng = RandomPCG(*seed, RandomPCG::DEFAULT_INC);
|
||||
uint32_t r = rng.rand();
|
||||
*seed = rng.get_seed();
|
||||
return r;
|
||||
}
|
||||
|
||||
void Math::seed(uint64_t x) {
|
||||
default_rand.seed(x);
|
||||
}
|
||||
|
||||
void Math::randomize() {
|
||||
default_rand.randomize();
|
||||
}
|
||||
|
||||
uint32_t Math::rand() {
|
||||
return default_rand.rand();
|
||||
}
|
||||
|
||||
double Math::randfn(double mean, double deviation) {
|
||||
return default_rand.randfn(mean, deviation);
|
||||
}
|
||||
|
||||
int Math::step_decimals(double p_step) {
|
||||
static const int maxn = 10;
|
||||
static const double sd[maxn] = {
|
||||
0.9999, // somehow compensate for floating point error
|
||||
0.09999,
|
||||
0.009999,
|
||||
0.0009999,
|
||||
0.00009999,
|
||||
0.000009999,
|
||||
0.0000009999,
|
||||
0.00000009999,
|
||||
0.000000009999,
|
||||
0.0000000009999
|
||||
};
|
||||
|
||||
double abs = Math::abs(p_step);
|
||||
double decs = abs - (int)abs; // Strip away integer part
|
||||
for (int i = 0; i < maxn; i++) {
|
||||
if (decs >= sd[i]) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Only meant for editor usage in float ranges, where a step of 0
|
||||
// means that decimal digits should not be limited in String::num.
|
||||
int Math::range_step_decimals(double p_step) {
|
||||
if (p_step < 0.0000000000001) {
|
||||
return 16; // Max value hardcoded in String::num
|
||||
}
|
||||
return step_decimals(p_step);
|
||||
}
|
||||
|
||||
double Math::dectime(double p_value, double p_amount, double p_step) {
|
||||
WARN_DEPRECATED_MSG("The `dectime()` function has been deprecated and will be removed in Godot 4.0. Use `move_toward()` instead.");
|
||||
double sgn = p_value < 0 ? -1.0 : 1.0;
|
||||
double val = Math::abs(p_value);
|
||||
val -= p_amount * p_step;
|
||||
if (val < 0.0) {
|
||||
val = 0.0;
|
||||
}
|
||||
return val * sgn;
|
||||
}
|
||||
|
||||
double Math::ease(double p_x, double p_c) {
|
||||
if (p_x < 0) {
|
||||
p_x = 0;
|
||||
} else if (p_x > 1.0) {
|
||||
p_x = 1.0;
|
||||
}
|
||||
if (p_c > 0) {
|
||||
if (p_c < 1.0) {
|
||||
return 1.0 - Math::pow(1.0 - p_x, 1.0 / p_c);
|
||||
} else {
|
||||
return Math::pow(p_x, p_c);
|
||||
}
|
||||
} else if (p_c < 0) {
|
||||
//inout ease
|
||||
|
||||
if (p_x < 0.5) {
|
||||
return Math::pow(p_x * 2.0, -p_c) * 0.5;
|
||||
} else {
|
||||
return (1.0 - Math::pow(1.0 - (p_x - 0.5) * 2.0, -p_c)) * 0.5 + 0.5;
|
||||
}
|
||||
} else {
|
||||
return 0; // no ease (raw)
|
||||
}
|
||||
}
|
||||
|
||||
double Math::stepify(double p_value, double p_step) {
|
||||
if (p_step != 0) {
|
||||
p_value = Math::floor(p_value / p_step + 0.5) * p_step;
|
||||
}
|
||||
return p_value;
|
||||
}
|
||||
|
||||
uint32_t Math::larger_prime(uint32_t p_val) {
|
||||
static const uint32_t primes[] = {
|
||||
5,
|
||||
13,
|
||||
23,
|
||||
47,
|
||||
97,
|
||||
193,
|
||||
389,
|
||||
769,
|
||||
1543,
|
||||
3079,
|
||||
6151,
|
||||
12289,
|
||||
24593,
|
||||
49157,
|
||||
98317,
|
||||
196613,
|
||||
393241,
|
||||
786433,
|
||||
1572869,
|
||||
3145739,
|
||||
6291469,
|
||||
12582917,
|
||||
25165843,
|
||||
50331653,
|
||||
100663319,
|
||||
201326611,
|
||||
402653189,
|
||||
805306457,
|
||||
1610612741,
|
||||
0,
|
||||
};
|
||||
|
||||
int idx = 0;
|
||||
while (true) {
|
||||
ERR_FAIL_COND_V(primes[idx] == 0, 0);
|
||||
if (primes[idx] > p_val) {
|
||||
return primes[idx];
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
double Math::random(double from, double to) {
|
||||
return default_rand.random(from, to);
|
||||
}
|
||||
|
||||
float Math::random(float from, float to) {
|
||||
return default_rand.random(from, to);
|
||||
}
|
||||
|
||||
real_t Math::randomr(real_t from, real_t to) {
|
||||
return default_rand.randomr(from, to);
|
||||
}
|
||||
|
||||
int Math::random(int from, int to) {
|
||||
return default_rand.random(from, to);
|
||||
}
|
668
sfw/math_funcs.h
Normal file
668
sfw/math_funcs.h
Normal file
@ -0,0 +1,668 @@
|
||||
#ifndef MATH_FUNCS_H
|
||||
#define MATH_FUNCS_H
|
||||
|
||||
/*************************************************************************/
|
||||
/* math_funcs.h */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* PANDEMONIUM ENGINE */
|
||||
/* https://github.com/Relintai/pandemonium_engine */
|
||||
/*************************************************************************/
|
||||
/* Copyright (c) 2022-present Péter Magyar. */
|
||||
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
||||
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
||||
/* */
|
||||
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||
/* a copy of this software and associated documentation files (the */
|
||||
/* "Software"), to deal in the Software without restriction, including */
|
||||
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||
/* the following conditions: */
|
||||
/* */
|
||||
/* The above copyright notice and this permission notice shall be */
|
||||
/* included in all copies or substantial portions of the Software. */
|
||||
/* */
|
||||
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
||||
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "error_macros.h"
|
||||
#include "math_defs.h"
|
||||
#include "random_pcg.h"
|
||||
#include "typedefs.h"
|
||||
|
||||
#include "pcg.h"
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
class Math {
|
||||
static RandomPCG default_rand;
|
||||
|
||||
public:
|
||||
Math() {} // useless to instance
|
||||
|
||||
// Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD).
|
||||
static const uint64_t RANDOM_32BIT_MAX = 0xFFFFFFFF;
|
||||
|
||||
static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
|
||||
static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
|
||||
static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
|
||||
static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
|
||||
static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
|
||||
static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
|
||||
|
||||
static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc((float)Math_PI * p_x); }
|
||||
static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
|
||||
static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
|
||||
static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
|
||||
|
||||
// Always does clamping so always safe to use.
|
||||
static _ALWAYS_INLINE_ double asin(double p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asin(p_x)); }
|
||||
static _ALWAYS_INLINE_ float asin(float p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asinf(p_x)); }
|
||||
|
||||
// Always does clamping so always safe to use.
|
||||
static _ALWAYS_INLINE_ double acos(double p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acos(p_x)); }
|
||||
static _ALWAYS_INLINE_ float acos(float p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acosf(p_x)); }
|
||||
|
||||
static _ALWAYS_INLINE_ double asin_unsafe(double p_x) { return ::asin(p_x); }
|
||||
static _ALWAYS_INLINE_ float asin_unsafe(float p_x) { return ::asinf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double acos_unsafe(double p_x) { return ::acos(p_x); }
|
||||
static _ALWAYS_INLINE_ float acos_unsafe(float p_x) { return ::acosf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
|
||||
static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); }
|
||||
static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
|
||||
static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); }
|
||||
static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); }
|
||||
|
||||
static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
|
||||
static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
|
||||
// x + 0.5 -> so f.e. 0.9999999 will become 1
|
||||
static _ALWAYS_INLINE_ int floorf_int(const float x) { return static_cast<int>(x + 0.5); }
|
||||
|
||||
static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
|
||||
static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); }
|
||||
static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); }
|
||||
|
||||
static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
|
||||
static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double log1p(double p_x) { return ::log1p(p_x); }
|
||||
static _ALWAYS_INLINE_ float log1p(float p_x) { return ::log1pf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double log10(double p_x) { return ::log10f(p_x); }
|
||||
static _ALWAYS_INLINE_ float log10(float p_x) { return ::log10(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double log2(double p_x) { return ::log2(p_x); }
|
||||
static _ALWAYS_INLINE_ float log2(float p_x) { return ::log2f(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
|
||||
static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
|
||||
|
||||
static _ALWAYS_INLINE_ double erf(double p_x) { return ::erf(p_x); }
|
||||
static _ALWAYS_INLINE_ float erf(float p_x) { return ::erff(p_x); }
|
||||
|
||||
// can save typing static_cast<float>
|
||||
inline static float divf(const float a, const float b) { return a / b; }
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_nan(double p_val) {
|
||||
#ifdef _MSC_VER
|
||||
return _isnan(p_val);
|
||||
#elif defined(__GNUC__) && __GNUC__ < 6
|
||||
union {
|
||||
uint64_t u;
|
||||
double f;
|
||||
} ieee754;
|
||||
ieee754.f = p_val;
|
||||
// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
|
||||
return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
|
||||
#else
|
||||
return isnan(p_val);
|
||||
#endif
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_nan(float p_val) {
|
||||
#ifdef _MSC_VER
|
||||
return _isnan(p_val);
|
||||
#elif defined(__GNUC__) && __GNUC__ < 6
|
||||
union {
|
||||
uint32_t u;
|
||||
float f;
|
||||
} ieee754;
|
||||
ieee754.f = p_val;
|
||||
// -----------------------------------
|
||||
// (single-precision floating-point)
|
||||
// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
|
||||
// : (> 0x7f800000)
|
||||
// where,
|
||||
// s : sign
|
||||
// x : non-zero number
|
||||
// -----------------------------------
|
||||
return ((ieee754.u & 0x7fffffff) > 0x7f800000);
|
||||
#else
|
||||
return isnan(p_val);
|
||||
#endif
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_inf(double p_val) {
|
||||
#ifdef _MSC_VER
|
||||
return !_finite(p_val);
|
||||
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
|
||||
#elif defined(__GNUC__) && __GNUC__ < 6
|
||||
union {
|
||||
uint64_t u;
|
||||
double f;
|
||||
} ieee754;
|
||||
ieee754.f = p_val;
|
||||
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
|
||||
((unsigned)ieee754.u == 0);
|
||||
#else
|
||||
return isinf(p_val);
|
||||
#endif
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_inf(float p_val) {
|
||||
#ifdef _MSC_VER
|
||||
return !_finite(p_val);
|
||||
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
|
||||
#elif defined(__GNUC__) && __GNUC__ < 6
|
||||
union {
|
||||
uint32_t u;
|
||||
float f;
|
||||
} ieee754;
|
||||
ieee754.f = p_val;
|
||||
return (ieee754.u & 0x7fffffff) == 0x7f800000;
|
||||
#else
|
||||
return isinf(p_val);
|
||||
#endif
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double abs(double g) {
|
||||
return absd(g);
|
||||
}
|
||||
static _ALWAYS_INLINE_ float abs(float g) {
|
||||
return absf(g);
|
||||
}
|
||||
static _ALWAYS_INLINE_ int abs(int g) {
|
||||
return g > 0 ? g : -g;
|
||||
}
|
||||
static _ALWAYS_INLINE_ int64_t abs(int64_t g) {
|
||||
return g > 0 ? g : -g;
|
||||
}
|
||||
static _ALWAYS_INLINE_ int absi(int g) {
|
||||
return g > 0 ? g : -g;
|
||||
}
|
||||
static _ALWAYS_INLINE_ int64_t absi(int64_t g) {
|
||||
return g > 0 ? g : -g;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
|
||||
double value = Math::fmod(p_x, p_y);
|
||||
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
||||
value += p_y;
|
||||
}
|
||||
value += 0.0;
|
||||
return value;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
|
||||
float value = Math::fmod(p_x, p_y);
|
||||
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
||||
value += p_y;
|
||||
}
|
||||
value += 0.0f;
|
||||
return value;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float fposmodp(float p_x, float p_y) {
|
||||
float value = Math::fmod(p_x, p_y);
|
||||
if (value < 0) {
|
||||
value += p_y;
|
||||
}
|
||||
value += 0.0f;
|
||||
return value;
|
||||
}
|
||||
static _ALWAYS_INLINE_ double fposmodp(double p_x, double p_y) {
|
||||
double value = Math::fmod(p_x, p_y);
|
||||
if (value < 0) {
|
||||
value += p_y;
|
||||
}
|
||||
value += 0.0;
|
||||
return value;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
|
||||
ERR_FAIL_COND_V_MSG(p_y == 0, 0, "Division by zero in posmod is undefined. Returning 0 as fallback.");
|
||||
int64_t value = p_x % p_y;
|
||||
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
||||
value += p_y;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double deg2rad(double p_y) {
|
||||
return p_y * Math_PI / 180.0;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float deg2rad(float p_y) {
|
||||
return p_y * (float)(Math_PI / 180.0);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double rad2deg(double p_y) {
|
||||
return p_y * 180.0 / Math_PI;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float rad2deg(float p_y) {
|
||||
return p_y * (float)(180.0 / Math_PI);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) {
|
||||
return p_from + (p_to - p_from) * p_weight;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) {
|
||||
return p_from + (p_to - p_from) * p_weight;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
|
||||
double difference = fmod(p_to - p_from, Math_TAU);
|
||||
double distance = fmod(2.0 * difference, Math_TAU) - difference;
|
||||
return p_from + distance * p_weight;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
|
||||
float difference = fmod(p_to - p_from, (float)Math_TAU);
|
||||
float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
|
||||
return p_from + distance * p_weight;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
|
||||
return (p_value - p_from) / (p_to - p_from);
|
||||
}
|
||||
static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
|
||||
return (p_value - p_from) / (p_to - p_from);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
|
||||
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
||||
}
|
||||
static _ALWAYS_INLINE_ float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
|
||||
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
|
||||
return 0.5 *
|
||||
((p_from * 2.0) +
|
||||
(-p_pre + p_to) * p_weight +
|
||||
(2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
|
||||
(-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
|
||||
}
|
||||
static _ALWAYS_INLINE_ float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
|
||||
return 0.5f *
|
||||
((p_from * 2.0f) +
|
||||
(-p_pre + p_to) * p_weight +
|
||||
(2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
|
||||
(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
|
||||
/* Formula from Wikipedia article on Bezier curves. */
|
||||
double omt = (1.0 - p_t);
|
||||
double omt2 = omt * omt;
|
||||
double omt3 = omt2 * omt;
|
||||
double t2 = p_t * p_t;
|
||||
double t3 = t2 * p_t;
|
||||
|
||||
return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
|
||||
/* Formula from Wikipedia article on Bezier curves. */
|
||||
float omt = (1.0f - p_t);
|
||||
float omt2 = omt * omt;
|
||||
float omt3 = omt2 * omt;
|
||||
float t2 = p_t * p_t;
|
||||
float t3 = t2 * p_t;
|
||||
|
||||
return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) {
|
||||
if (is_equal_approx(p_from, p_to)) {
|
||||
return p_from;
|
||||
}
|
||||
double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
|
||||
return s * s * (3.0 - 2.0 * s);
|
||||
}
|
||||
static _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_s) {
|
||||
if (is_equal_approx(p_from, p_to)) {
|
||||
return p_from;
|
||||
}
|
||||
float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
|
||||
return s * s * (3.0f - 2.0f * s);
|
||||
}
|
||||
static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
|
||||
return abs(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
|
||||
return abs(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double linear2db(double p_linear) {
|
||||
return Math::log(p_linear) * 8.6858896380650365530225783783321;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float linear2db(float p_linear) {
|
||||
return Math::log(p_linear) * (float)8.6858896380650365530225783783321;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double db2linear(double p_db) {
|
||||
return Math::exp(p_db * 0.11512925464970228420089957273422);
|
||||
}
|
||||
static _ALWAYS_INLINE_ float db2linear(float p_db) {
|
||||
return Math::exp(p_db * (float)0.11512925464970228420089957273422);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double round(double p_val) {
|
||||
return ::round(p_val);
|
||||
}
|
||||
static _ALWAYS_INLINE_ float round(float p_val) {
|
||||
return ::roundf(p_val);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) {
|
||||
int64_t range = max - min;
|
||||
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
|
||||
}
|
||||
static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) {
|
||||
double range = max - min;
|
||||
double result = is_zero_approx(range) ? min : value - (range * Math::floor((value - min) / range));
|
||||
if (is_equal_approx(result, max)) {
|
||||
return min;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) {
|
||||
float range = max - min;
|
||||
float result = is_zero_approx(range) ? min : value - (range * Math::floor((value - min) / range));
|
||||
if (is_equal_approx(result, max)) {
|
||||
return min;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float fract(float value) {
|
||||
return value - floor(value);
|
||||
}
|
||||
static _ALWAYS_INLINE_ double fract(double value) {
|
||||
return value - floor(value);
|
||||
}
|
||||
static _ALWAYS_INLINE_ float pingpong(float value, float length) {
|
||||
return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
|
||||
}
|
||||
static _ALWAYS_INLINE_ double pingpong(double value, double length) {
|
||||
return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
|
||||
}
|
||||
|
||||
// double only, as these functions are mainly used by the editor and not performance-critical,
|
||||
static double ease(double p_x, double p_c);
|
||||
static int step_decimals(double p_step);
|
||||
static int range_step_decimals(double p_step);
|
||||
static double stepify(double p_value, double p_step);
|
||||
static double dectime(double p_value, double p_amount, double p_step);
|
||||
|
||||
static uint32_t larger_prime(uint32_t p_val);
|
||||
|
||||
static void seed(uint64_t x);
|
||||
static void randomize();
|
||||
static uint32_t rand_from_seed(uint64_t *seed);
|
||||
static uint32_t rand();
|
||||
static _ALWAYS_INLINE_ double randd() {
|
||||
return (double)rand() / (double)Math::RANDOM_32BIT_MAX;
|
||||
}
|
||||
static _ALWAYS_INLINE_ float randf() {
|
||||
return (float)rand() / (float)Math::RANDOM_32BIT_MAX;
|
||||
}
|
||||
static double randfn(double mean, double deviation);
|
||||
|
||||
static double random(double from, double to);
|
||||
static float random(float from, float to);
|
||||
static real_t randomr(real_t from, real_t to);
|
||||
static int random(int from, int to);
|
||||
static _ALWAYS_INLINE_ int randomi(int from, int to) {
|
||||
return random(from, to);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx_ratio(real_t a, real_t b, real_t epsilon = CMP_EPSILON, real_t min_epsilon = CMP_EPSILON) {
|
||||
// this is an approximate way to check that numbers are close, as a ratio of their average size
|
||||
// helps compare approximate numbers that may be very big or very small
|
||||
real_t diff = abs(a - b);
|
||||
if (diff == 0 || diff < min_epsilon) {
|
||||
return true;
|
||||
}
|
||||
real_t avg_size = (abs(a) + abs(b)) / 2;
|
||||
diff /= avg_size;
|
||||
return diff < epsilon;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b) {
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
float tolerance = (float)CMP_EPSILON * abs(a);
|
||||
if (tolerance < (float)CMP_EPSILON) {
|
||||
tolerance = (float)CMP_EPSILON;
|
||||
}
|
||||
return abs(a - b) < tolerance;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b, float tolerance) {
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
return abs(a - b) < tolerance;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approxt(float a, float b, float tolerance) {
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
return abs(a - b) < tolerance;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_zero_approx(float s) {
|
||||
return abs(s) < (float)CMP_EPSILON;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) {
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
double tolerance = CMP_EPSILON * abs(a);
|
||||
if (tolerance < CMP_EPSILON) {
|
||||
tolerance = CMP_EPSILON;
|
||||
}
|
||||
return abs(a - b) < tolerance;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b, double tolerance) {
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
return abs(a - b) < tolerance;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ bool is_zero_approx(double s) {
|
||||
return abs(s) < CMP_EPSILON;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float absf(float g) {
|
||||
union {
|
||||
float f;
|
||||
uint32_t i;
|
||||
} u;
|
||||
|
||||
u.f = g;
|
||||
u.i &= 2147483647u;
|
||||
return u.f;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ double absd(double g) {
|
||||
union {
|
||||
double d;
|
||||
uint64_t i;
|
||||
} u;
|
||||
u.d = g;
|
||||
u.i &= (uint64_t)9223372036854775807ll;
|
||||
return u.d;
|
||||
}
|
||||
|
||||
// This function should be as fast as possible and rounding mode should not matter.
|
||||
static _ALWAYS_INLINE_ int fast_ftoi(float a) {
|
||||
// Assuming every supported compiler has `lrint()`.
|
||||
return lrintf(a);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
|
||||
uint16_t h_exp, h_sig;
|
||||
uint32_t f_sgn, f_exp, f_sig;
|
||||
|
||||
h_exp = (h & 0x7c00u);
|
||||
f_sgn = ((uint32_t)h & 0x8000u) << 16;
|
||||
switch (h_exp) {
|
||||
case 0x0000u: /* 0 or subnormal */
|
||||
h_sig = (h & 0x03ffu);
|
||||
/* Signed zero */
|
||||
if (h_sig == 0) {
|
||||
return f_sgn;
|
||||
}
|
||||
/* Subnormal */
|
||||
h_sig <<= 1;
|
||||
while ((h_sig & 0x0400u) == 0) {
|
||||
h_sig <<= 1;
|
||||
h_exp++;
|
||||
}
|
||||
f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
|
||||
f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
|
||||
return f_sgn + f_exp + f_sig;
|
||||
case 0x7c00u: /* inf or NaN */
|
||||
/* All-ones exponent and a copy of the significand */
|
||||
return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
|
||||
default: /* normalized */
|
||||
/* Just need to adjust the exponent and shift */
|
||||
return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
|
||||
}
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
|
||||
union {
|
||||
uint32_t u32;
|
||||
float f32;
|
||||
} u;
|
||||
|
||||
u.u32 = halfbits_to_floatbits(*h);
|
||||
return u.f32;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
|
||||
return halfptr_to_float(&h);
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
|
||||
union {
|
||||
float fv;
|
||||
uint32_t ui;
|
||||
} ci;
|
||||
ci.fv = f;
|
||||
|
||||
uint32_t x = ci.ui;
|
||||
uint32_t sign = (unsigned short)(x >> 31);
|
||||
uint32_t mantissa;
|
||||
uint32_t exp;
|
||||
uint16_t hf;
|
||||
|
||||
// get mantissa
|
||||
mantissa = x & ((1 << 23) - 1);
|
||||
// get exponent bits
|
||||
exp = x & (0xFF << 23);
|
||||
if (exp >= 0x47800000) {
|
||||
// check if the original single precision float number is a NaN
|
||||
if (mantissa && (exp == (0xFF << 23))) {
|
||||
// we have a single precision NaN
|
||||
mantissa = (1 << 23) - 1;
|
||||
} else {
|
||||
// 16-bit half-float representation stores number as Inf
|
||||
mantissa = 0;
|
||||
}
|
||||
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
|
||||
(uint16_t)(mantissa >> 13);
|
||||
}
|
||||
// check if exponent is <= -15
|
||||
else if (exp <= 0x38000000) {
|
||||
/*// store a denorm half-float value or zero
|
||||
exp = (0x38000000 - exp) >> 23;
|
||||
mantissa >>= (14 + exp);
|
||||
|
||||
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
|
||||
*/
|
||||
hf = 0; //denormals do not work for 3D, convert to zero
|
||||
} else {
|
||||
hf = (((uint16_t)sign) << 15) |
|
||||
(uint16_t)((exp - 0x38000000) >> 13) |
|
||||
(uint16_t)(mantissa >> 13);
|
||||
}
|
||||
|
||||
return hf;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
|
||||
return p_step != 0 ? Math::stepify(p_target - p_offset, p_step) + p_offset : p_target;
|
||||
}
|
||||
|
||||
static _ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
|
||||
if (p_step != 0) {
|
||||
float a = Math::stepify(p_target - p_offset, p_step + p_separation) + p_offset;
|
||||
float b = a;
|
||||
if (p_target >= 0) {
|
||||
b -= p_separation;
|
||||
} else {
|
||||
b += p_step;
|
||||
}
|
||||
return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
|
||||
}
|
||||
return p_target;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // MATH_FUNCS_H
|
@ -32,7 +32,7 @@
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "core/math/vector3.h"
|
||||
#include "vector3.h"
|
||||
|
||||
class Variant;
|
||||
|
||||
|
@ -32,10 +32,10 @@
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
#include "core/math/math_funcs.h"
|
||||
#include "core/math/vector3.h"
|
||||
#include "core/string/ustring.h"
|
||||
#include "math_defs.h"
|
||||
#include "math_funcs.h"
|
||||
#include "vector3.h"
|
||||
#include "ustring.h"
|
||||
|
||||
struct _NO_DISCARD_CLASS_ Quaternion {
|
||||
union {
|
||||
|
@ -32,8 +32,8 @@
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "core/math/math_funcs.h"
|
||||
#include "core/string/ustring.h"
|
||||
#include "math_funcs.h"
|
||||
#include "ustring.h"
|
||||
|
||||
struct Basis;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user