mirror of
https://github.com/Relintai/sdl2_frt.git
synced 2025-01-17 14:47:19 +01:00
343 lines
13 KiB
C
343 lines
13 KiB
C
|
/* @(#)e_pow.c 5.1 93/09/24 */
|
||
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
|
||
|
#if defined(LIBM_SCCS) && !defined(lint)
|
||
|
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
|
||
|
#endif
|
||
|
|
||
|
/* __ieee754_pow(x,y) return x**y
|
||
|
*
|
||
|
* n
|
||
|
* Method: Let x = 2 * (1+f)
|
||
|
* 1. Compute and return log2(x) in two pieces:
|
||
|
* log2(x) = w1 + w2,
|
||
|
* where w1 has 53-24 = 29 bit trailing zeros.
|
||
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
||
|
* arithmetic, where |y'|<=0.5.
|
||
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
||
|
*
|
||
|
* Special cases:
|
||
|
* 1. (anything) ** 0 is 1
|
||
|
* 2. (anything) ** 1 is itself
|
||
|
* 3. (anything) ** NAN is NAN
|
||
|
* 4. NAN ** (anything except 0) is NAN
|
||
|
* 5. +-(|x| > 1) ** +INF is +INF
|
||
|
* 6. +-(|x| > 1) ** -INF is +0
|
||
|
* 7. +-(|x| < 1) ** +INF is +0
|
||
|
* 8. +-(|x| < 1) ** -INF is +INF
|
||
|
* 9. +-1 ** +-INF is NAN
|
||
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
||
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
||
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
||
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
||
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
||
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
||
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
||
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
||
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
||
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
||
|
*
|
||
|
* Accuracy:
|
||
|
* pow(x,y) returns x**y nearly rounded. In particular
|
||
|
* pow(integer,integer)
|
||
|
* always returns the correct integer provided it is
|
||
|
* representable.
|
||
|
*
|
||
|
* Constants :
|
||
|
* The hexadecimal values are the intended ones for the following
|
||
|
* constants. The decimal values may be used, provided that the
|
||
|
* compiler will convert from decimal to binary accurately enough
|
||
|
* to produce the hexadecimal values shown.
|
||
|
*/
|
||
|
|
||
|
#include "math_libm.h"
|
||
|
#include "math_private.h"
|
||
|
|
||
|
libm_hidden_proto(scalbn)
|
||
|
libm_hidden_proto(fabs)
|
||
|
#ifdef __STDC__
|
||
|
static const double
|
||
|
#else
|
||
|
static double
|
||
|
#endif
|
||
|
bp[] = { 1.0, 1.5, }, dp_h[] = {
|
||
|
0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
||
|
|
||
|
dp_l[] = {
|
||
|
0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
||
|
|
||
|
zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
||
|
huge_val = 1.0e300, tiny = 1.0e-300,
|
||
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
||
|
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
||
|
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
||
|
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
||
|
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
||
|
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
||
|
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
||
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||
|
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
||
|
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||
|
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
||
|
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
||
|
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
||
|
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
||
|
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
||
|
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
|
||
|
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
||
|
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
|
||
|
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */
|
||
|
|
||
|
#ifdef __STDC__
|
||
|
double attribute_hidden __ieee754_pow(double x, double y)
|
||
|
#else
|
||
|
double attribute_hidden __ieee754_pow(x, y)
|
||
|
double x, y;
|
||
|
#endif
|
||
|
{
|
||
|
double z, ax, z_h, z_l, p_h, p_l;
|
||
|
double y1, t1, t2, r, s, t, u, v, w;
|
||
|
int32_t i, j, k, yisint, n;
|
||
|
int32_t hx, hy, ix, iy;
|
||
|
u_int32_t lx, ly;
|
||
|
|
||
|
EXTRACT_WORDS(hx, lx, x);
|
||
|
EXTRACT_WORDS(hy, ly, y);
|
||
|
ix = hx & 0x7fffffff;
|
||
|
iy = hy & 0x7fffffff;
|
||
|
|
||
|
/* y==zero: x**0 = 1 */
|
||
|
if ((iy | ly) == 0)
|
||
|
return one;
|
||
|
|
||
|
/* +-NaN return x+y */
|
||
|
if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
|
||
|
iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
|
||
|
return x + y;
|
||
|
|
||
|
/* determine if y is an odd int when x < 0
|
||
|
* yisint = 0 ... y is not an integer
|
||
|
* yisint = 1 ... y is an odd int
|
||
|
* yisint = 2 ... y is an even int
|
||
|
*/
|
||
|
yisint = 0;
|
||
|
if (hx < 0) {
|
||
|
if (iy >= 0x43400000)
|
||
|
yisint = 2; /* even integer y */
|
||
|
else if (iy >= 0x3ff00000) {
|
||
|
k = (iy >> 20) - 0x3ff; /* exponent */
|
||
|
if (k > 20) {
|
||
|
j = ly >> (52 - k);
|
||
|
if ((j << (52 - k)) == ly)
|
||
|
yisint = 2 - (j & 1);
|
||
|
} else if (ly == 0) {
|
||
|
j = iy >> (20 - k);
|
||
|
if ((j << (20 - k)) == iy)
|
||
|
yisint = 2 - (j & 1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* special value of y */
|
||
|
if (ly == 0) {
|
||
|
if (iy == 0x7ff00000) { /* y is +-inf */
|
||
|
if (((ix - 0x3ff00000) | lx) == 0)
|
||
|
return y - y; /* inf**+-1 is NaN */
|
||
|
else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
|
||
|
return (hy >= 0) ? y : zero;
|
||
|
else /* (|x|<1)**-,+inf = inf,0 */
|
||
|
return (hy < 0) ? -y : zero;
|
||
|
}
|
||
|
if (iy == 0x3ff00000) { /* y is +-1 */
|
||
|
if (hy < 0)
|
||
|
return one / x;
|
||
|
else
|
||
|
return x;
|
||
|
}
|
||
|
if (hy == 0x40000000)
|
||
|
return x * x; /* y is 2 */
|
||
|
if (hy == 0x3fe00000) { /* y is 0.5 */
|
||
|
if (hx >= 0) /* x >= +0 */
|
||
|
return __ieee754_sqrt(x);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ax = fabs(x);
|
||
|
/* special value of x */
|
||
|
if (lx == 0) {
|
||
|
if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
|
||
|
z = ax; /* x is +-0,+-inf,+-1 */
|
||
|
if (hy < 0)
|
||
|
z = one / z; /* z = (1/|x|) */
|
||
|
if (hx < 0) {
|
||
|
if (((ix - 0x3ff00000) | yisint) == 0) {
|
||
|
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
||
|
} else if (yisint == 1)
|
||
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||
|
}
|
||
|
return z;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* (x<0)**(non-int) is NaN */
|
||
|
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
|
||
|
return (x - x) / (x - x);
|
||
|
|
||
|
/* |y| is huge */
|
||
|
if (iy > 0x41e00000) { /* if |y| > 2**31 */
|
||
|
if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
|
||
|
if (ix <= 0x3fefffff)
|
||
|
return (hy < 0) ? huge_val * huge_val : tiny * tiny;
|
||
|
if (ix >= 0x3ff00000)
|
||
|
return (hy > 0) ? huge_val * huge_val : tiny * tiny;
|
||
|
}
|
||
|
/* over/underflow if x is not close to one */
|
||
|
if (ix < 0x3fefffff)
|
||
|
return (hy < 0) ? huge_val * huge_val : tiny * tiny;
|
||
|
if (ix > 0x3ff00000)
|
||
|
return (hy > 0) ? huge_val * huge_val : tiny * tiny;
|
||
|
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
||
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||
|
t = x - 1; /* t has 20 trailing zeros */
|
||
|
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
|
||
|
u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
|
||
|
v = t * ivln2_l - w * ivln2;
|
||
|
t1 = u + v;
|
||
|
SET_LOW_WORD(t1, 0);
|
||
|
t2 = v - (t1 - u);
|
||
|
} else {
|
||
|
double s2, s_h, s_l, t_h, t_l;
|
||
|
n = 0;
|
||
|
/* take care subnormal number */
|
||
|
if (ix < 0x00100000) {
|
||
|
ax *= two53;
|
||
|
n -= 53;
|
||
|
GET_HIGH_WORD(ix, ax);
|
||
|
}
|
||
|
n += ((ix) >> 20) - 0x3ff;
|
||
|
j = ix & 0x000fffff;
|
||
|
/* determine interval */
|
||
|
ix = j | 0x3ff00000; /* normalize ix */
|
||
|
if (j <= 0x3988E)
|
||
|
k = 0; /* |x|<sqrt(3/2) */
|
||
|
else if (j < 0xBB67A)
|
||
|
k = 1; /* |x|<sqrt(3) */
|
||
|
else {
|
||
|
k = 0;
|
||
|
n += 1;
|
||
|
ix -= 0x00100000;
|
||
|
}
|
||
|
SET_HIGH_WORD(ax, ix);
|
||
|
|
||
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||
|
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||
|
v = one / (ax + bp[k]);
|
||
|
s = u * v;
|
||
|
s_h = s;
|
||
|
SET_LOW_WORD(s_h, 0);
|
||
|
/* t_h=ax+bp[k] High */
|
||
|
t_h = zero;
|
||
|
SET_HIGH_WORD(t_h,
|
||
|
((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
|
||
|
t_l = ax - (t_h - bp[k]);
|
||
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
||
|
/* compute log(ax) */
|
||
|
s2 = s * s;
|
||
|
r = s2 * s2 * (L1 +
|
||
|
s2 * (L2 +
|
||
|
s2 * (L3 +
|
||
|
s2 * (L4 + s2 * (L5 + s2 * L6)))));
|
||
|
r += s_l * (s_h + s);
|
||
|
s2 = s_h * s_h;
|
||
|
t_h = 3.0 + s2 + r;
|
||
|
SET_LOW_WORD(t_h, 0);
|
||
|
t_l = r - ((t_h - 3.0) - s2);
|
||
|
/* u+v = s*(1+...) */
|
||
|
u = s_h * t_h;
|
||
|
v = s_l * t_h + t_l * s;
|
||
|
/* 2/(3log2)*(s+...) */
|
||
|
p_h = u + v;
|
||
|
SET_LOW_WORD(p_h, 0);
|
||
|
p_l = v - (p_h - u);
|
||
|
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||
|
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
||
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||
|
t = (double) n;
|
||
|
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
||
|
SET_LOW_WORD(t1, 0);
|
||
|
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
||
|
}
|
||
|
|
||
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
||
|
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
||
|
s = -one; /* (-ve)**(odd int) */
|
||
|
|
||
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||
|
y1 = y;
|
||
|
SET_LOW_WORD(y1, 0);
|
||
|
p_l = (y - y1) * t1 + y * t2;
|
||
|
p_h = y1 * t1;
|
||
|
z = p_l + p_h;
|
||
|
EXTRACT_WORDS(j, i, z);
|
||
|
if (j >= 0x40900000) { /* z >= 1024 */
|
||
|
if (((j - 0x40900000) | i) != 0) /* if z > 1024 */
|
||
|
return s * huge_val * huge_val; /* overflow */
|
||
|
else {
|
||
|
if (p_l + ovt > z - p_h)
|
||
|
return s * huge_val * huge_val; /* overflow */
|
||
|
}
|
||
|
} else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */
|
||
|
if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */
|
||
|
return s * tiny * tiny; /* underflow */
|
||
|
else {
|
||
|
if (p_l <= z - p_h)
|
||
|
return s * tiny * tiny; /* underflow */
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* compute 2**(p_h+p_l)
|
||
|
*/
|
||
|
i = j & 0x7fffffff;
|
||
|
k = (i >> 20) - 0x3ff;
|
||
|
n = 0;
|
||
|
if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
||
|
n = j + (0x00100000 >> (k + 1));
|
||
|
k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
|
||
|
t = zero;
|
||
|
SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
|
||
|
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
|
||
|
if (j < 0)
|
||
|
n = -n;
|
||
|
p_h -= t;
|
||
|
}
|
||
|
t = p_l + p_h;
|
||
|
SET_LOW_WORD(t, 0);
|
||
|
u = t * lg2_h;
|
||
|
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
||
|
z = u + v;
|
||
|
w = v - (z - u);
|
||
|
t = z * z;
|
||
|
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
||
|
r = (z * t1) / (t1 - two) - (w + z * w);
|
||
|
z = one - (r - z);
|
||
|
GET_HIGH_WORD(j, z);
|
||
|
j += (n << 20);
|
||
|
if ((j >> 20) <= 0)
|
||
|
z = scalbn(z, n); /* subnormal output */
|
||
|
else
|
||
|
SET_HIGH_WORD(z, j);
|
||
|
return s * z;
|
||
|
}
|