mirror of
https://github.com/Relintai/sdl2_frt.git
synced 2025-01-12 05:41:10 +01:00
88 lines
2.7 KiB
C
88 lines
2.7 KiB
C
|
/* @(#)k_sin.c 5.1 93/09/24 */
|
||
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
|
||
|
#if defined(LIBM_SCCS) && !defined(lint)
|
||
|
static const char rcsid[] =
|
||
|
"$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
|
||
|
#endif
|
||
|
|
||
|
/* __kernel_sin( x, y, iy)
|
||
|
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||
|
* Input y is the tail of x.
|
||
|
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||
|
*
|
||
|
* Algorithm
|
||
|
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||
|
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
||
|
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||
|
* [0,pi/4]
|
||
|
* 3 13
|
||
|
* sin(x) ~ x + S1*x + ... + S6*x
|
||
|
* where
|
||
|
*
|
||
|
* |sin(x) 2 4 6 8 10 12 | -58
|
||
|
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||
|
* | x |
|
||
|
*
|
||
|
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||
|
* ~ sin(x) + (1-x*x/2)*y
|
||
|
* For better accuracy, let
|
||
|
* 3 2 2 2 2
|
||
|
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||
|
* then 3 2
|
||
|
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||
|
*/
|
||
|
|
||
|
#include "math_libm.h"
|
||
|
#include "math_private.h"
|
||
|
|
||
|
#ifdef __STDC__
|
||
|
static const double
|
||
|
#else
|
||
|
static double
|
||
|
#endif
|
||
|
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||
|
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||
|
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||
|
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
||
|
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||
|
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||
|
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||
|
|
||
|
#ifdef __STDC__
|
||
|
double attribute_hidden
|
||
|
__kernel_sin(double x, double y, int iy)
|
||
|
#else
|
||
|
double attribute_hidden
|
||
|
__kernel_sin(x, y, iy)
|
||
|
double x, y;
|
||
|
int iy; /* iy=0 if y is zero */
|
||
|
#endif
|
||
|
{
|
||
|
double z, r, v;
|
||
|
int32_t ix;
|
||
|
GET_HIGH_WORD(ix, x);
|
||
|
ix &= 0x7fffffff; /* high word of x */
|
||
|
if (ix < 0x3e400000) { /* |x| < 2**-27 */
|
||
|
if ((int) x == 0)
|
||
|
return x;
|
||
|
} /* generate inexact */
|
||
|
z = x * x;
|
||
|
v = z * x;
|
||
|
r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
|
||
|
if (iy == 0)
|
||
|
return x + v * (S1 + z * r);
|
||
|
else
|
||
|
return x - ((z * (half * y - v * r) - y) - v * S1);
|
||
|
}
|