rcpp_framework/core/math/math.h

343 lines
11 KiB
C++

#ifndef MATH_H
#define MATH_H
#include "core/typedefs.h"
#include "math_defs.h"
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <cstdint>
#define MATH_PI 3.1415926535897932384626433833
#define EPSILON 0.00001
class Math {
public:
static const uint64_t RANDOM_32BIT_MAX = 0xFFFFFFFF;
inline static float sin(const float x) { return ::sinf(x); }
inline static double sin(const double x) { return ::sin(x); }
inline static float cos(const float x) { return ::cosf(x); }
inline static double cos(const double x) { return ::cos(x); }
inline static float tan(const float x) { return ::tanf(x); }
inline static double tan(const double x) { return ::tan(x); }
inline static float sinh(const float x) { return ::sinhf(x); }
inline static double sinh(const double x) { return ::sinh(x); }
inline static float cosh(const float x) { return ::coshf(x); }
inline static double cosh(const double x) { return ::cosh(x); }
inline static float tanh(const float x) { return ::tanhf(x); }
inline static double tanh(const double x) { return ::tanh(x); }
inline static float sinc(const float x) { return x == 0 ? 1 : ::sin(x) / x; }
inline static double sinc(const double x) { return x == 0 ? 1 : ::sin(x) / x; }
inline static float sincn(const float x) { return sinc(MATH_PI * x); }
inline static double sincn(const double x) { return sinc(MATH_PI * x); }
inline static float asin(const float x) { return ::asinf(x); }
inline static double asin(const double x) { return ::asin(x); }
inline static float acos(const float x) { return ::acosf(x); }
inline static double acos(const double x) { return ::acos(x); }
inline static float atan(const float x) { return ::atanf(x); }
inline static double atan(const double x) { return ::atan(x); }
inline static float atan2(const float x, const float y) { return ::atan2f(x, y); }
inline static double atan2(const double x, const float y) { return ::atan2(x, y); }
inline static float sqrt(const float x) { return ::sqrtf(x); }
inline static double sqrt(const double x) { return ::sqrt(x); }
inline static float fmod(const float x, const float y) { return ::fmodf(x, y); }
inline static double fmod(const double x, const float y) { return ::fmod(x, y); }
inline static float floor(const float x) { return ::floorf(x); }
inline static double floor(const double x) { return ::floor(x); }
inline static float ceil(const float x) { return ::ceilf(x); }
inline static double ceil(const double x) { return ::ceil(x); }
inline static float round(const float x) { return ::roundf(x); }
inline static double round(const double x) { return ::round(x); }
inline static float pow(const float x, const float y) { return ::powf(x, y); }
inline static double pow(const double x, const double y) { return ::pow(x, y); }
inline static float log(const float x) { return ::logf(x); }
inline static double log(const double x) { return ::log(x); }
static float inv_sqrt(const float x);
static float fast_inv_sqrt(const float x);
inline static float abs(const float x) { return x > 0 ? x : -x; }
inline static double abs(const double x) { return x > 0 ? x : -x; }
inline static int absi(const int x) { return x > 0 ? x : -x; }
inline static float deg2rad(const float x) { return x * MATH_PI / 180.0; }
inline static double deg2rad(const double x) { return x * MATH_PI / 180.0; }
inline static int deg2rad(const int x) { return x * MATH_PI / 180.0; }
inline static float rad2deg(const float x) { return x * 180.0 / MATH_PI; }
inline static double rad2deg(const double x) { return x * 180.0 / MATH_PI; }
inline static int rad2deg(const int x) { return x * 180.0 / MATH_PI; }
inline static double lerp(double from, double to, double weight) { return from + (to - from) * weight; }
inline static float lerp(float from, float to, float weight) { return from + (to - from) * weight; }
static float is_equal_approx(const float a, const float b);
static float is_zero_approx(const float a);
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static _ALWAYS_INLINE_ bool is_equal_approx_ratio(float a, float b, float epsilon = CMP_EPSILON, float min_epsilon = CMP_EPSILON) {
// this is an approximate way to check that numbers are close, as a ratio of their average size
// helps compare approximate numbers that may be very big or very small
real_t diff = abs(a - b);
if (diff == 0.0 || diff < min_epsilon) {
return true;
}
real_t avg_size = (abs(a) + abs(b)) / 2.0;
diff /= avg_size;
return diff < epsilon;
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
// This function should be as fast as possible and rounding mode should not matter.
static _ALWAYS_INLINE_ int fast_ftoi(float a) {
// Assuming every supported compiler has `lrint()`.
return lrintf(a);
}
static void seed(const unsigned int s);
static void randomize();
static int rand();
static float randf();
static double randd();
static int rand(const int m);
static int rand(const int from, const int to);
static float rand(const float from, const float to);
static float rand(const double from, const double to);
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static bool is_nan(double p_val) {
#ifdef _MSC_VER
return _isnan(p_val);
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint64_t u;
double f;
} ieee754;
ieee754.f = p_val;
// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
#else
return isnan(p_val);
#endif
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static bool is_nan(float p_val) {
#ifdef _MSC_VER
return _isnan(p_val);
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint32_t u;
float f;
} ieee754;
ieee754.f = p_val;
// -----------------------------------
// (single-precision floating-point)
// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
// : (> 0x7f800000)
// where,
// s : sign
// x : non-zero number
// -----------------------------------
return ((ieee754.u & 0x7fffffff) > 0x7f800000);
#else
return isnan(p_val);
#endif
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static bool is_inf(double p_val) {
#ifdef _MSC_VER
return !_finite(p_val);
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint64_t u;
double f;
} ieee754;
ieee754.f = p_val;
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
((unsigned)ieee754.u == 0);
#else
return isinf(p_val);
#endif
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static bool is_inf(float p_val) {
#ifdef _MSC_VER
return !_finite(p_val);
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint32_t u;
float f;
} ieee754;
ieee754.f = p_val;
return (ieee754.u & 0x7fffffff) == 0x7f800000;
#else
return isinf(p_val);
#endif
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
uint16_t h_exp, h_sig;
uint32_t f_sgn, f_exp, f_sig;
h_exp = (h & 0x7c00u);
f_sgn = ((uint32_t)h & 0x8000u) << 16;
switch (h_exp) {
case 0x0000u: /* 0 or subnormal */
h_sig = (h & 0x03ffu);
/* Signed zero */
if (h_sig == 0) {
return f_sgn;
}
/* Subnormal */
h_sig <<= 1;
while ((h_sig & 0x0400u) == 0) {
h_sig <<= 1;
h_exp++;
}
f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
return f_sgn + f_exp + f_sig;
case 0x7c00u: /* inf or NaN */
/* All-ones exponent and a copy of the significand */
return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
default: /* normalized */
/* Just need to adjust the exponent and shift */
return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
}
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
union {
uint32_t u32;
float f32;
} u;
u.u32 = halfbits_to_floatbits(*h);
return u.f32;
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
return halfptr_to_float(&h);
}
// Taken from the Godot Engine (MIT License)
// Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.
// Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).
static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
union {
float fv;
uint32_t ui;
} ci;
ci.fv = f;
uint32_t x = ci.ui;
uint32_t sign = (unsigned short)(x >> 31);
uint32_t mantissa;
uint32_t exp;
uint16_t hf;
// get mantissa
mantissa = x & ((1 << 23) - 1);
// get exponent bits
exp = x & (0xFF << 23);
if (exp >= 0x47800000) {
// check if the original single precision float number is a NaN
if (mantissa && (exp == (0xFF << 23))) {
// we have a single precision NaN
mantissa = (1 << 23) - 1;
} else {
// 16-bit half-float representation stores number as Inf
mantissa = 0;
}
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
(uint16_t)(mantissa >> 13);
}
// check if exponent is <= -15
else if (exp <= 0x38000000) {
/*// store a denorm half-float value or zero
exp = (0x38000000 - exp) >> 23;
mantissa >>= (14 + exp);
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
*/
hf = 0; // denormals do not work for 3D, convert to zero
} else {
hf = (((uint16_t)sign) << 15) |
(uint16_t)((exp - 0x38000000) >> 13) |
(uint16_t)(mantissa >> 13);
}
return hf;
}
};
#ifndef ABS
#define ABS(x) ((x > 0) ? (x) : (-x))
#endif
#ifndef SGN
#define SGN(x) ((x > 0) ? (1.0) : (-1.0))
#endif
#ifndef MAX
#define MAX(x, y) ((x > y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x, y) ((x < y) ? (x) : (y))
#endif
#ifndef CLAMP
#define CLAMP(a, cmin, cmax) ((a < cmin) ? (cmin) : ((a > cmax) ? (cmax) : (a)))
#endif
#endif