#ifndef MATH_H #define MATH_H #include "core/typedefs.h" #include "math_defs.h" #include #include #include #include #define MATH_PI 3.1415926535897932384626433833 #define EPSILON 0.00001 class Math { public: static const uint64_t RANDOM_32BIT_MAX = 0xFFFFFFFF; inline static float sin(const float x) { return ::sinf(x); } inline static double sin(const double x) { return ::sin(x); } inline static float cos(const float x) { return ::cosf(x); } inline static double cos(const double x) { return ::cos(x); } inline static float tan(const float x) { return ::tanf(x); } inline static double tan(const double x) { return ::tan(x); } inline static float sinh(const float x) { return ::sinhf(x); } inline static double sinh(const double x) { return ::sinh(x); } inline static float cosh(const float x) { return ::coshf(x); } inline static double cosh(const double x) { return ::cosh(x); } inline static float tanh(const float x) { return ::tanhf(x); } inline static double tanh(const double x) { return ::tanh(x); } inline static float sinc(const float x) { return x == 0 ? 1 : ::sin(x) / x; } inline static double sinc(const double x) { return x == 0 ? 1 : ::sin(x) / x; } inline static float sincn(const float x) { return sinc(MATH_PI * x); } inline static double sincn(const double x) { return sinc(MATH_PI * x); } inline static float asin(const float x) { return ::asinf(x); } inline static double asin(const double x) { return ::asin(x); } inline static float acos(const float x) { return ::acosf(x); } inline static double acos(const double x) { return ::acos(x); } inline static float atan(const float x) { return ::atanf(x); } inline static double atan(const double x) { return ::atan(x); } inline static float atan2(const float x, const float y) { return ::atan2f(x, y); } inline static double atan2(const double x, const float y) { return ::atan2(x, y); } inline static float sqrt(const float x) { return ::sqrtf(x); } inline static double sqrt(const double x) { return ::sqrt(x); } inline static float fmod(const float x, const float y) { return ::fmodf(x, y); } inline static double fmod(const double x, const float y) { return ::fmod(x, y); } inline static float floor(const float x) { return ::floorf(x); } inline static double floor(const double x) { return ::floor(x); } inline static float ceil(const float x) { return ::ceilf(x); } inline static double ceil(const double x) { return ::ceil(x); } inline static float round(const float x) { return ::roundf(x); } inline static double round(const double x) { return ::round(x); } inline static float pow(const float x, const float y) { return ::powf(x, y); } inline static double pow(const double x, const double y) { return ::pow(x, y); } inline static float log(const float x) { return ::logf(x); } inline static double log(const double x) { return ::log(x); } static float inv_sqrt(const float x); static float fast_inv_sqrt(const float x); inline static float abs(const float x) { return x > 0 ? x : -x; } inline static double abs(const double x) { return x > 0 ? x : -x; } inline static int absi(const int x) { return x > 0 ? x : -x; } inline static float deg2rad(const float x) { return x * MATH_PI / 180.0; } inline static double deg2rad(const double x) { return x * MATH_PI / 180.0; } inline static int deg2rad(const int x) { return x * MATH_PI / 180.0; } inline static float rad2deg(const float x) { return x * 180.0 / MATH_PI; } inline static double rad2deg(const double x) { return x * 180.0 / MATH_PI; } inline static int rad2deg(const int x) { return x * 180.0 / MATH_PI; } inline static double lerp(double from, double to, double weight) { return from + (to - from) * weight; } inline static float lerp(float from, float to, float weight) { return from + (to - from) * weight; } static float is_equal_approx(const float a, const float b); static float is_zero_approx(const float a); // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static _ALWAYS_INLINE_ bool is_equal_approx_ratio(float a, float b, float epsilon = CMP_EPSILON, float min_epsilon = CMP_EPSILON) { // this is an approximate way to check that numbers are close, as a ratio of their average size // helps compare approximate numbers that may be very big or very small real_t diff = abs(a - b); if (diff == 0.0 || diff < min_epsilon) { return true; } real_t avg_size = (abs(a) + abs(b)) / 2.0; diff /= avg_size; return diff < epsilon; } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). // This function should be as fast as possible and rounding mode should not matter. static _ALWAYS_INLINE_ int fast_ftoi(float a) { // Assuming every supported compiler has `lrint()`. return lrintf(a); } static void seed(const unsigned int s); static void randomize(); static int rand(); static float randf(); static double randd(); static int rand(const int m); static int rand(const int from, const int to); static float rand(const float from, const float to); static float rand(const double from, const double to); // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static bool is_nan(double p_val) { #ifdef _MSC_VER return _isnan(p_val); #elif defined(__GNUC__) && __GNUC__ < 6 union { uint64_t u; double f; } ieee754; ieee754.f = p_val; // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000 return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000); #else return isnan(p_val); #endif } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static bool is_nan(float p_val) { #ifdef _MSC_VER return _isnan(p_val); #elif defined(__GNUC__) && __GNUC__ < 6 union { uint32_t u; float f; } ieee754; ieee754.f = p_val; // ----------------------------------- // (single-precision floating-point) // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx // : (> 0x7f800000) // where, // s : sign // x : non-zero number // ----------------------------------- return ((ieee754.u & 0x7fffffff) > 0x7f800000); #else return isnan(p_val); #endif } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static bool is_inf(double p_val) { #ifdef _MSC_VER return !_finite(p_val); // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era #elif defined(__GNUC__) && __GNUC__ < 6 union { uint64_t u; double f; } ieee754; ieee754.f = p_val; return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && ((unsigned)ieee754.u == 0); #else return isinf(p_val); #endif } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static bool is_inf(float p_val) { #ifdef _MSC_VER return !_finite(p_val); // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era #elif defined(__GNUC__) && __GNUC__ < 6 union { uint32_t u; float f; } ieee754; ieee754.f = p_val; return (ieee754.u & 0x7fffffff) == 0x7f800000; #else return isinf(p_val); #endif } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) { uint16_t h_exp, h_sig; uint32_t f_sgn, f_exp, f_sig; h_exp = (h & 0x7c00u); f_sgn = ((uint32_t)h & 0x8000u) << 16; switch (h_exp) { case 0x0000u: /* 0 or subnormal */ h_sig = (h & 0x03ffu); /* Signed zero */ if (h_sig == 0) { return f_sgn; } /* Subnormal */ h_sig <<= 1; while ((h_sig & 0x0400u) == 0) { h_sig <<= 1; h_exp++; } f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23; f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13; return f_sgn + f_exp + f_sig; case 0x7c00u: /* inf or NaN */ /* All-ones exponent and a copy of the significand */ return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13); default: /* normalized */ /* Just need to adjust the exponent and shift */ return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13); } } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) { union { uint32_t u32; float f32; } u; u.u32 = halfbits_to_floatbits(*h); return u.f32; } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) { return halfptr_to_float(&h); } // Taken from the Godot Engine (MIT License) // Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. // Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). static _ALWAYS_INLINE_ uint16_t make_half_float(float f) { union { float fv; uint32_t ui; } ci; ci.fv = f; uint32_t x = ci.ui; uint32_t sign = (unsigned short)(x >> 31); uint32_t mantissa; uint32_t exp; uint16_t hf; // get mantissa mantissa = x & ((1 << 23) - 1); // get exponent bits exp = x & (0xFF << 23); if (exp >= 0x47800000) { // check if the original single precision float number is a NaN if (mantissa && (exp == (0xFF << 23))) { // we have a single precision NaN mantissa = (1 << 23) - 1; } else { // 16-bit half-float representation stores number as Inf mantissa = 0; } hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) | (uint16_t)(mantissa >> 13); } // check if exponent is <= -15 else if (exp <= 0x38000000) { /*// store a denorm half-float value or zero exp = (0x38000000 - exp) >> 23; mantissa >>= (14 + exp); hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa); */ hf = 0; // denormals do not work for 3D, convert to zero } else { hf = (((uint16_t)sign) << 15) | (uint16_t)((exp - 0x38000000) >> 13) | (uint16_t)(mantissa >> 13); } return hf; } }; #ifndef ABS #define ABS(x) ((x > 0) ? (x) : (-x)) #endif #ifndef SGN #define SGN(x) ((x > 0) ? (1.0) : (-1.0)) #endif #ifndef MAX #define MAX(x, y) ((x > y) ? (x) : (y)) #endif #ifndef MIN #define MIN(x, y) ((x < y) ? (x) : (y)) #endif #ifndef CLAMP #define CLAMP(a, cmin, cmax) ((a < cmin) ? (cmin) : ((a > cmax) ? (cmax) : (a))) #endif #endif