pmlpp/mlpp/regularization/reg.cpp
2023-01-24 19:00:54 +01:00

166 lines
4.9 KiB
C++

//
// Reg.cpp
//
// Created by Marc Melikyan on 1/16/21.
//
#include "reg.h"
#include "../activation/activation.h"
#include "../lin_alg/lin_alg.h"
#include <iostream>
#include <random>
namespace MLPP {
double Reg::regTerm(std::vector<double> weights, double lambda, double alpha, std::string reg) {
if (reg == "Ridge") {
double reg = 0;
for (int i = 0; i < weights.size(); i++) {
reg += weights[i] * weights[i];
}
return reg * lambda / 2;
} else if (reg == "Lasso") {
double reg = 0;
for (int i = 0; i < weights.size(); i++) {
reg += abs(weights[i]);
}
return reg * lambda;
} else if (reg == "ElasticNet") {
double reg = 0;
for (int i = 0; i < weights.size(); i++) {
reg += alpha * abs(weights[i]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
}
return reg * lambda;
}
return 0;
}
double Reg::regTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg) {
if (reg == "Ridge") {
double reg = 0;
for (int i = 0; i < weights.size(); i++) {
for (int j = 0; j < weights[i].size(); j++) {
reg += weights[i][j] * weights[i][j];
}
}
return reg * lambda / 2;
} else if (reg == "Lasso") {
double reg = 0;
for (int i = 0; i < weights.size(); i++) {
for (int j = 0; j < weights[i].size(); j++) {
reg += abs(weights[i][j]);
}
}
return reg * lambda;
} else if (reg == "ElasticNet") {
double reg = 0;
for (int i = 0; i < weights.size(); i++) {
for (int j = 0; j < weights[i].size(); j++) {
reg += alpha * abs(weights[i][j]); // Lasso Reg
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
}
}
return reg * lambda;
}
return 0;
}
std::vector<double> Reg::regWeights(std::vector<double> weights, double lambda, double alpha, std::string reg) {
LinAlg alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
// }
// return weights;
}
std::vector<std::vector<double>> Reg::regWeights(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg) {
LinAlg alg;
if (reg == "WeightClipping") {
return regDerivTerm(weights, lambda, alpha, reg);
}
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
// for(int i = 0; i < weights.size(); i++){
// for(int j = 0; j < weights[i].size(); j++){
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
// }
// }
// return weights;
}
std::vector<double> Reg::regDerivTerm(std::vector<double> weights, double lambda, double alpha, std::string reg) {
std::vector<double> regDeriv;
regDeriv.resize(weights.size());
for (int i = 0; i < regDeriv.size(); i++) {
regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i);
}
return regDeriv;
}
std::vector<std::vector<double>> Reg::regDerivTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg) {
std::vector<std::vector<double>> regDeriv;
regDeriv.resize(weights.size());
for (int i = 0; i < regDeriv.size(); i++) {
regDeriv[i].resize(weights[0].size());
}
for (int i = 0; i < regDeriv.size(); i++) {
for (int j = 0; j < regDeriv[i].size(); j++) {
regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j);
}
}
return regDeriv;
}
double Reg::regDerivTerm(std::vector<double> weights, double lambda, double alpha, std::string reg, int j) {
Activation act;
if (reg == "Ridge") {
return lambda * weights[j];
} else if (reg == "Lasso") {
return lambda * act.sign(weights[j]);
} else if (reg == "ElasticNet") {
return alpha * lambda * act.sign(weights[j]) + (1 - alpha) * lambda * weights[j];
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (weights[j] > alpha) {
return alpha;
} else if (weights[j] < lambda) {
return lambda;
} else {
return weights[j];
}
} else {
return 0;
}
}
double Reg::regDerivTerm(std::vector<std::vector<double>> weights, double lambda, double alpha, std::string reg, int i, int j) {
Activation act;
if (reg == "Ridge") {
return lambda * weights[i][j];
} else if (reg == "Lasso") {
return lambda * act.sign(weights[i][j]);
} else if (reg == "ElasticNet") {
return alpha * lambda * act.sign(weights[i][j]) + (1 - alpha) * lambda * weights[i][j];
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
// alpha > lambda.
if (weights[i][j] > alpha) {
return alpha;
} else if (weights[i][j] < lambda) {
return lambda;
} else {
return weights[i][j];
}
} else {
return 0;
}
}
} //namespace MLPP