mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-04-16 03:36:03 +02:00
146 lines
5.8 KiB
C++
146 lines
5.8 KiB
C++
/*************************************************************************/
|
|
/* register_types.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "register_types.h"
|
|
|
|
#include "data/data.h"
|
|
#include "lin_alg/mlpp_matrix.h"
|
|
#include "lin_alg/mlpp_tensor3.h"
|
|
#include "lin_alg/mlpp_vector.h"
|
|
|
|
#include "activation/activation.h"
|
|
#include "convolutions/convolutions.h"
|
|
#include "cost/cost.h"
|
|
#include "gauss_markov_checker/gauss_markov_checker.h"
|
|
#include "hypothesis_testing/hypothesis_testing.h"
|
|
#include "lin_alg/lin_alg.h"
|
|
#include "numerical_analysis/numerical_analysis.h"
|
|
#include "regularization/reg.h"
|
|
#include "stat/stat.h"
|
|
#include "transforms/transforms.h"
|
|
#include "utilities/utilities.h"
|
|
|
|
#include "hidden_layer/hidden_layer.h"
|
|
#include "multi_output_layer/multi_output_layer.h"
|
|
#include "output_layer/output_layer.h"
|
|
|
|
#include "ann/ann.h"
|
|
#include "auto_encoder/auto_encoder.h"
|
|
#include "bernoulli_nb/bernoulli_nb.h"
|
|
#include "c_log_log_reg/c_log_log_reg.h"
|
|
#include "dual_svc/dual_svc.h"
|
|
#include "exp_reg/exp_reg.h"
|
|
#include "gan/gan.h"
|
|
#include "gaussian_nb/gaussian_nb.h"
|
|
#include "kmeans/kmeans.h"
|
|
#include "knn/knn.h"
|
|
#include "lin_reg/lin_reg.h"
|
|
#include "log_reg/log_reg.h"
|
|
#include "mann/mann.h"
|
|
#include "mlp/mlp.h"
|
|
#include "multinomial_nb/multinomial_nb.h"
|
|
#include "outlier_finder/outlier_finder.h"
|
|
#include "pca/pca.h"
|
|
#include "probit_reg/probit_reg.h"
|
|
#include "softmax_net/softmax_net.h"
|
|
#include "softmax_reg/softmax_reg.h"
|
|
#include "svc/svc.h"
|
|
#include "tanh_reg/tanh_reg.h"
|
|
#include "uni_lin_reg/uni_lin_reg.h"
|
|
#include "wgan/wgan.h"
|
|
|
|
#ifdef TESTS_ENABLED
|
|
#include "test/mlpp_matrix_tests.h"
|
|
#include "test/mlpp_tests.h"
|
|
#endif
|
|
|
|
void register_pmlpp_types(ModuleRegistrationLevel p_level) {
|
|
if (p_level == MODULE_REGISTRATION_LEVEL_SCENE) {
|
|
ClassDB::register_class<MLPPVector>();
|
|
ClassDB::register_class<MLPPMatrix>();
|
|
ClassDB::register_class<MLPPTensor3>();
|
|
|
|
ClassDB::register_class<MLPPUtilities>();
|
|
ClassDB::register_class<MLPPReg>();
|
|
ClassDB::register_class<MLPPActivation>();
|
|
ClassDB::register_class<MLPPCost>();
|
|
ClassDB::register_class<MLPPTransforms>();
|
|
ClassDB::register_class<MLPPStat>();
|
|
ClassDB::register_class<MLPPNumericalAnalysis>();
|
|
ClassDB::register_class<MLPPHypothesisTesting>();
|
|
ClassDB::register_class<MLPPGaussMarkovChecker>();
|
|
ClassDB::register_class<MLPPConvolutions>();
|
|
ClassDB::register_class<MLPPLinAlg>();
|
|
|
|
ClassDB::register_class<MLPPHiddenLayer>();
|
|
ClassDB::register_class<MLPPOutputLayer>();
|
|
ClassDB::register_class<MLPPMultiOutputLayer>();
|
|
|
|
ClassDB::register_class<MLPPKNN>();
|
|
ClassDB::register_class<MLPPKMeans>();
|
|
|
|
ClassDB::register_class<MLPPMLP>();
|
|
ClassDB::register_class<MLPPWGAN>();
|
|
ClassDB::register_class<MLPPPCA>();
|
|
ClassDB::register_class<MLPPUniLinReg>();
|
|
ClassDB::register_class<MLPPOutlierFinder>();
|
|
ClassDB::register_class<MLPPProbitReg>();
|
|
ClassDB::register_class<MLPPSVC>();
|
|
ClassDB::register_class<MLPPSoftmaxReg>();
|
|
ClassDB::register_class<MLPPAutoEncoder>();
|
|
ClassDB::register_class<MLPPTanhReg>();
|
|
ClassDB::register_class<MLPPSoftmaxNet>();
|
|
ClassDB::register_class<MLPPMultinomialNB>();
|
|
ClassDB::register_class<MLPPMANN>();
|
|
ClassDB::register_class<MLPPLogReg>();
|
|
ClassDB::register_class<MLPPLinReg>();
|
|
ClassDB::register_class<MLPPGaussianNB>();
|
|
ClassDB::register_class<MLPPGAN>();
|
|
ClassDB::register_class<MLPPExpReg>();
|
|
ClassDB::register_class<MLPPDualSVC>();
|
|
ClassDB::register_class<MLPPCLogLogReg>();
|
|
ClassDB::register_class<MLPPBernoulliNB>();
|
|
ClassDB::register_class<MLPPANN>();
|
|
|
|
ClassDB::register_class<MLPPDataESimple>();
|
|
ClassDB::register_class<MLPPDataSimple>();
|
|
ClassDB::register_class<MLPPDataComplex>();
|
|
ClassDB::register_class<MLPPData>();
|
|
|
|
#ifdef TESTS_ENABLED
|
|
ClassDB::register_class<MLPPTests>();
|
|
ClassDB::register_class<MLPPMatrixTests>();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void unregister_pmlpp_types(ModuleRegistrationLevel p_level) {
|
|
}
|