mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-24 15:57:18 +01:00
323 lines
8.7 KiB
C++
323 lines
8.7 KiB
C++
//
|
|
// TanhReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "tanh_reg.h"
|
|
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
/*
|
|
Ref<MLPPMatrix> MLPPTanhReg::get_input_set() {
|
|
return _input_set;
|
|
}
|
|
void MLPPTanhReg::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
_input_set = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPTanhReg::get_output_set() {
|
|
return _output_set;
|
|
}
|
|
void MLPPTanhReg::set_output_set(const Ref<MLPPMatrix> &val) {
|
|
_output_set = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPReg::RegularizationType MLPPTanhReg::get_reg() {
|
|
return _reg;
|
|
}
|
|
void MLPPTanhReg::set_reg(const MLPPReg::RegularizationType val) {
|
|
_reg = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
|
|
real_t MLPPTanhReg::get_lambda() {
|
|
return _lambda;
|
|
}
|
|
void MLPPTanhReg::set_lambda(const real_t val) {
|
|
_lambda = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
|
|
real_t MLPPTanhReg::get_alpha() {
|
|
return _alpha;
|
|
}
|
|
void MLPPTanhReg::set_alpha(const real_t val) {
|
|
_alpha = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
*/
|
|
|
|
std::vector<real_t> MLPPTanhReg::model_set_test(std::vector<std::vector<real_t>> X) {
|
|
return evaluatem(X);
|
|
}
|
|
|
|
real_t MLPPTanhReg::model_test(std::vector<real_t> x) {
|
|
return evaluatev(x);
|
|
}
|
|
|
|
void MLPPTanhReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
std::vector<real_t> error = alg.subtraction(_y_hat, _output_set);
|
|
|
|
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(_input_set), alg.hadamard_product(error, avn.tanh(_z, 1)))));
|
|
//_reg
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, "None");
|
|
|
|
// Calculating the bias gradients
|
|
_bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(_z, 1))) / _n;
|
|
|
|
forward_pass();
|
|
|
|
// UI PORTION
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
MLPPUtilities::UI(_weights, _bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPTanhReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
|
|
|
while (true) {
|
|
int outputIndex = distribution(generator);
|
|
|
|
real_t y_hat = evaluatev(_input_set[outputIndex]);
|
|
cost_prev = cost({ _y_hat }, { _output_set[outputIndex] });
|
|
|
|
real_t error = y_hat - _output_set[outputIndex];
|
|
|
|
// Weight Updation
|
|
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate * error * (1 - y_hat * y_hat), _input_set[outputIndex]));
|
|
//_reg
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, "None");
|
|
|
|
// Bias updation
|
|
_bias -= learning_rate * error * (1 - y_hat * y_hat);
|
|
|
|
y_hat = evaluatev(_input_set[outputIndex]);
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost({ _y_hat }, { _output_set[outputIndex] }));
|
|
MLPPUtilities::UI(_weights, _bias);
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
void MLPPTanhReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = _n / mini_batch_size;
|
|
auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch);
|
|
auto inputMiniBatches = std::get<0>(batches);
|
|
auto outputMiniBatches = std::get<1>(batches);
|
|
|
|
while (true) {
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
std::vector<real_t> y_hat = evaluatem(inputMiniBatches[i]);
|
|
std::vector<real_t> z = propagatem(inputMiniBatches[i]);
|
|
cost_prev = cost(y_hat, outputMiniBatches[i]);
|
|
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
// Calculating the weight gradients
|
|
_weights = alg.subtraction(_weights, alg.scalarMultiply(learning_rate / _n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.tanh(z, 1)))));
|
|
//_reg
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, "None");
|
|
|
|
// Calculating the bias gradients
|
|
_bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(_z, true))) / _n;
|
|
|
|
forward_pass();
|
|
|
|
y_hat = evaluatem(inputMiniBatches[i]);
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputMiniBatches[i]));
|
|
MLPPUtilities::UI(_weights, _bias);
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
real_t MLPPTanhReg::score() {
|
|
MLPPUtilities util;
|
|
|
|
return util.performance(_y_hat, _output_set);
|
|
}
|
|
|
|
void MLPPTanhReg::save(std::string file_name) {
|
|
MLPPUtilities util;
|
|
|
|
util.saveParameters(file_name, _weights, _bias);
|
|
}
|
|
|
|
bool MLPPTanhReg::is_initialized() {
|
|
return _initialized;
|
|
}
|
|
void MLPPTanhReg::initialize() {
|
|
if (_initialized) {
|
|
return;
|
|
}
|
|
|
|
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPTanhReg::MLPPTanhReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_n = _input_set.size();
|
|
_k = _input_set[0].size();
|
|
_reg = p_reg;
|
|
_lambda = p_lambda;
|
|
_alpha = p_alpha;
|
|
|
|
_y_hat.resize(_n);
|
|
_weights = MLPPUtilities::weightInitialization(_k);
|
|
_bias = MLPPUtilities::biasInitialization();
|
|
}
|
|
|
|
MLPPTanhReg::MLPPTanhReg() {
|
|
}
|
|
MLPPTanhReg::~MLPPTanhReg() {
|
|
}
|
|
|
|
real_t MLPPTanhReg::cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
|
MLPPReg regularization;
|
|
class MLPPCost cost;
|
|
|
|
//_reg
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(_weights, _lambda, _alpha, "None");
|
|
}
|
|
|
|
real_t MLPPTanhReg::evaluatev(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
return avn.tanh(alg.dot(_weights, x) + _bias);
|
|
}
|
|
|
|
real_t MLPPTanhReg::propagatev(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
return alg.dot(_weights, x) + _bias;
|
|
}
|
|
|
|
std::vector<real_t> MLPPTanhReg::evaluatem(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
return avn.tanh(alg.scalarAdd(_bias, alg.mat_vec_mult(X, _weights)));
|
|
}
|
|
|
|
std::vector<real_t> MLPPTanhReg::propagatem(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarAdd(_bias, alg.mat_vec_mult(X, _weights));
|
|
}
|
|
|
|
// Tanh ( wTx + b )
|
|
void MLPPTanhReg::forward_pass() {
|
|
MLPPActivation avn;
|
|
|
|
_z = propagatem(_input_set);
|
|
_y_hat = avn.tanh(_z);
|
|
}
|
|
|
|
void MLPPTanhReg::_bind_methods() {
|
|
/*
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPTanhReg::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPTanhReg::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPTanhReg::get_output_set);
|
|
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPTanhReg::set_output_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPTanhReg::get_reg);
|
|
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPTanhReg::set_reg);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPTanhReg::get_lambda);
|
|
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPTanhReg::set_lambda);
|
|
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPTanhReg::get_alpha);
|
|
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPTanhReg::set_alpha);
|
|
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
|
|
|
|
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPTanhReg::model_test);
|
|
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPTanhReg::model_set_test);
|
|
|
|
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::gradient_descent, false);
|
|
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPTanhReg::sgd, false);
|
|
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPTanhReg::mbgd, false);
|
|
|
|
ClassDB::bind_method(D_METHOD("score"), &MLPPTanhReg::score);
|
|
|
|
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPTanhReg::save);
|
|
|
|
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPTanhReg::is_initialized);
|
|
ClassDB::bind_method(D_METHOD("initialize"), &MLPPTanhReg::initialize);
|
|
*/
|
|
}
|