mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
70 lines
2.9 KiB
C++
70 lines
2.9 KiB
C++
#ifndef MLPP_ANN_H
|
|
#define MLPP_ANN_H
|
|
|
|
//
|
|
// ANN.hpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "../hidden_layer/hidden_layer.h"
|
|
#include "../output_layer/output_layer.h"
|
|
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
class MLPPANN {
|
|
public:
|
|
MLPPANN(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet);
|
|
~MLPPANN();
|
|
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
|
real_t modelTest(std::vector<real_t> x);
|
|
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
|
|
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
|
|
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
|
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI = 1);
|
|
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = 1);
|
|
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = 1);
|
|
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
|
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
|
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
|
void AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = 1);
|
|
real_t score();
|
|
void save(std::string fileName);
|
|
|
|
void setLearningRateScheduler(std::string type, real_t decayConstant);
|
|
void setLearningRateScheduler(std::string type, real_t decayConstant, real_t dropRate);
|
|
|
|
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
|
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
|
|
|
private:
|
|
real_t applyLearningRateScheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate);
|
|
|
|
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
|
|
|
|
void forwardPass();
|
|
void updateParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate);
|
|
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> computeGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
|
|
|
|
void UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet);
|
|
|
|
std::vector<std::vector<real_t>> inputSet;
|
|
std::vector<real_t> outputSet;
|
|
std::vector<real_t> y_hat;
|
|
|
|
std::vector<MLPPOldHiddenLayer> network;
|
|
MLPPOldOutputLayer *outputLayer;
|
|
|
|
int n;
|
|
int k;
|
|
|
|
std::string lrScheduler;
|
|
real_t decayConstant;
|
|
real_t dropRate;
|
|
};
|
|
|
|
#endif /* ANN_hpp */ |