pmlpp/mlpp/tanh_reg/tanh_reg.cpp

197 lines
5.3 KiB
C++

//
// TanhReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "tanh_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPTanhReg::MLPPTanhReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
}
std::vector<real_t> MLPPTanhReg::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
real_t MLPPTanhReg::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
void MLPPTanhReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.tanh(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n;
forwardPass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPTanhReg::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
real_t error = y_hat - outputSet[outputIndex];
// Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * (1 - y_hat * y_hat), inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Bias updation
bias -= learning_rate * error * (1 - y_hat * y_hat);
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPTanhReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
std::vector<real_t> z = propagate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.tanh(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n;
forwardPass();
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPTanhReg::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPTanhReg::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
}
real_t MLPPTanhReg::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPTanhReg::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.tanh(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
std::vector<real_t> MLPPTanhReg::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPTanhReg::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.tanh(alg.dot(weights, x) + bias);
}
real_t MLPPTanhReg::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
return alg.dot(weights, x) + bias;
}
// Tanh ( wTx + b )
void MLPPTanhReg::forwardPass() {
MLPPActivation avn;
z = propagate(inputSet);
y_hat = avn.tanh(z);
}