mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-10 17:49:36 +01:00
276 lines
6.8 KiB
C++
276 lines
6.8 KiB
C++
//
|
|
// ExpReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "exp_reg.h"
|
|
#include "../cost/cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../stat/stat.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
std::vector<real_t> MLPPExpReg::model_set_test(std::vector<std::vector<real_t>> X) {
|
|
return evaluatem(X);
|
|
}
|
|
|
|
real_t MLPPExpReg::model_test(std::vector<real_t> x) {
|
|
return evaluatev(x);
|
|
}
|
|
|
|
void MLPPExpReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
std::vector<real_t> error = alg.subtraction(_y_hat, _output_set);
|
|
|
|
for (int i = 0; i < _k; i++) {
|
|
// Calculating the weight gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < _n; j++) {
|
|
sum += error[j] * _input_set[j][i] * std::pow(_weights[i], _input_set[j][i] - 1);
|
|
}
|
|
real_t w_gradient = sum / _n;
|
|
|
|
// Calculating the initial gradient
|
|
real_t sum2 = 0;
|
|
for (int j = 0; j < _n; j++) {
|
|
sum2 += error[j] * std::pow(_weights[i], _input_set[j][i]);
|
|
}
|
|
|
|
real_t i_gradient = sum2 / _n;
|
|
|
|
// Weight/initial updation
|
|
_weights[i] -= learning_rate * w_gradient;
|
|
_initial[i] -= learning_rate * i_gradient;
|
|
}
|
|
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradient
|
|
real_t sum = 0;
|
|
for (int j = 0; j < _n; j++) {
|
|
sum += (_y_hat[j] - _output_set[j]);
|
|
}
|
|
real_t b_gradient = sum / _n;
|
|
|
|
// bias updation
|
|
_bias -= learning_rate * b_gradient;
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
MLPPUtilities::UI(_weights, _bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPExpReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
|
|
|
while (true) {
|
|
int output_index = distribution(generator);
|
|
|
|
real_t y_hat = evaluatev(_input_set[output_index]);
|
|
cost_prev = cost({ y_hat }, { _output_set[output_index] });
|
|
|
|
for (int i = 0; i < _k; i++) {
|
|
// Calculating the weight gradients
|
|
|
|
real_t w_gradient = (y_hat - _output_set[output_index]) * _input_set[output_index][i] * std::pow(_weights[i], _input_set[output_index][i] - 1);
|
|
real_t i_gradient = (y_hat - _output_set[output_index]) * std::pow(_weights[i], _input_set[output_index][i]);
|
|
|
|
// Weight/initial updation
|
|
_weights[i] -= learning_rate * w_gradient;
|
|
_initial[i] -= learning_rate * i_gradient;
|
|
}
|
|
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradients
|
|
real_t b_gradient = (y_hat - _output_set[output_index]);
|
|
|
|
// Bias updation
|
|
_bias -= learning_rate * b_gradient;
|
|
y_hat = evaluatev(_input_set[output_index]);
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { _output_set[output_index] }));
|
|
MLPPUtilities::UI(_weights, _bias);
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
void MLPPExpReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = _n / mini_batch_size;
|
|
auto batches = MLPPUtilities::createMiniBatches(_input_set, _output_set, n_mini_batch);
|
|
auto input_mini_batches = std::get<0>(batches);
|
|
auto output_mini_batches = std::get<1>(batches);
|
|
|
|
while (true) {
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
std::vector<real_t> y_hat = evaluatem(input_mini_batches[i]);
|
|
cost_prev = cost(y_hat, output_mini_batches[i]);
|
|
std::vector<real_t> error = alg.subtraction(y_hat, output_mini_batches[i]);
|
|
|
|
for (int j = 0; j < _k; j++) {
|
|
// Calculating the weight gradient
|
|
real_t sum = 0;
|
|
for (uint32_t k = 0; k < output_mini_batches[i].size(); k++) {
|
|
sum += error[k] * input_mini_batches[i][k][j] * std::pow(_weights[j], input_mini_batches[i][k][j] - 1);
|
|
}
|
|
real_t w_gradient = sum / output_mini_batches[i].size();
|
|
|
|
// Calculating the initial gradient
|
|
real_t sum2 = 0;
|
|
for (uint32_t k = 0; k < output_mini_batches[i].size(); k++) {
|
|
sum2 += error[k] * std::pow(_weights[j], input_mini_batches[i][k][j]);
|
|
}
|
|
|
|
real_t i_gradient = sum2 / output_mini_batches[i].size();
|
|
|
|
// Weight/initial updation
|
|
_weights[j] -= learning_rate * w_gradient;
|
|
_initial[j] -= learning_rate * i_gradient;
|
|
}
|
|
|
|
_weights = regularization.regWeights(_weights, _lambda, _alpha, _reg);
|
|
|
|
// Calculating the bias gradient
|
|
real_t sum = 0;
|
|
for (uint32_t j = 0; j < output_mini_batches[i].size(); j++) {
|
|
sum += (y_hat[j] - output_mini_batches[i][j]);
|
|
}
|
|
|
|
//real_t b_gradient = sum / output_mini_batches[i].size();
|
|
y_hat = evaluatem(input_mini_batches[i]);
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, output_mini_batches[i]));
|
|
MLPPUtilities::UI(_weights, _bias);
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
}
|
|
|
|
real_t MLPPExpReg::score() {
|
|
MLPPUtilities util;
|
|
|
|
return util.performance(_y_hat, _output_set);
|
|
}
|
|
|
|
void MLPPExpReg::save(std::string file_name) {
|
|
MLPPUtilities util;
|
|
|
|
util.saveParameters(file_name, _weights, _initial, _bias);
|
|
}
|
|
|
|
MLPPExpReg::MLPPExpReg(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_n = p_input_set.size();
|
|
_k = p_input_set[0].size();
|
|
_reg = p_reg;
|
|
_lambda = p_lambda;
|
|
_alpha = p_alpha;
|
|
|
|
_y_hat.resize(_n);
|
|
_weights = MLPPUtilities::weightInitialization(_k);
|
|
_initial = MLPPUtilities::weightInitialization(_k);
|
|
_bias = MLPPUtilities::biasInitialization();
|
|
}
|
|
|
|
MLPPExpReg::MLPPExpReg() {
|
|
}
|
|
MLPPExpReg::~MLPPExpReg() {
|
|
}
|
|
|
|
real_t MLPPExpReg::cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
|
MLPPReg regularization;
|
|
MLPPCost mlpp_cost;
|
|
|
|
return mlpp_cost.MSE(y_hat, y) + regularization.regTerm(_weights, _lambda, _alpha, _reg);
|
|
}
|
|
|
|
real_t MLPPExpReg::evaluatev(std::vector<real_t> x) {
|
|
real_t y_hat = 0;
|
|
|
|
for (uint32_t i = 0; i < x.size(); i++) {
|
|
y_hat += _initial[i] * std::pow(_weights[i], x[i]);
|
|
}
|
|
|
|
return y_hat + _bias;
|
|
}
|
|
|
|
std::vector<real_t> MLPPExpReg::evaluatem(std::vector<std::vector<real_t>> X) {
|
|
std::vector<real_t> y_hat;
|
|
y_hat.resize(X.size());
|
|
|
|
for (uint32_t i = 0; i < X.size(); i++) {
|
|
y_hat[i] = 0;
|
|
for (uint32_t j = 0; j < X[i].size(); j++) {
|
|
y_hat[i] += _initial[j] * std::pow(_weights[j], X[i][j]);
|
|
}
|
|
y_hat[i] += _bias;
|
|
}
|
|
|
|
return y_hat;
|
|
}
|
|
|
|
// a * w^x + b
|
|
void MLPPExpReg::forward_pass() {
|
|
_y_hat = evaluatem(_input_set);
|
|
}
|
|
|
|
void MLPPExpReg::_bind_methods() {
|
|
}
|