mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-24 15:57:18 +01:00
58 lines
2.9 KiB
C++
58 lines
2.9 KiB
C++
|
|
#ifndef MLPP_NUMERICAL_ANALYSIS_H
|
|
#define MLPP_NUMERICAL_ANALYSIS_H
|
|
|
|
//
|
|
// NumericalAnalysis.hpp
|
|
//
|
|
//
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
|
|
class MLPPNumericalAnalysis {
|
|
public:
|
|
/* A numerical method for derivatives is used. This may be subject to change,
|
|
as an analytical method for calculating derivatives will most likely be used in
|
|
the future.
|
|
*/
|
|
double numDiff(double (*function)(double), double x);
|
|
double numDiff_2(double (*function)(double), double x);
|
|
double numDiff_3(double (*function)(double), double x);
|
|
|
|
double constantApproximation(double (*function)(double), double c);
|
|
double linearApproximation(double (*function)(double), double c, double x);
|
|
double quadraticApproximation(double (*function)(double), double c, double x);
|
|
double cubicApproximation(double (*function)(double), double c, double x);
|
|
|
|
double numDiff(double (*function)(std::vector<double>), std::vector<double> x, int axis);
|
|
double numDiff_2(double (*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2);
|
|
double numDiff_3(double (*function)(std::vector<double>), std::vector<double> x, int axis1, int axis2, int axis3);
|
|
|
|
double newtonRaphsonMethod(double (*function)(double), double x_0, double epoch_num);
|
|
double halleyMethod(double (*function)(double), double x_0, double epoch_num);
|
|
double invQuadraticInterpolation(double (*function)(double), std::vector<double> x_0, double epoch_num);
|
|
|
|
double eulerianMethod(double (*derivative)(double), std::vector<double> q_0, double p, double h); // Euler's method for solving diffrential equations.
|
|
double eulerianMethod(double (*derivative)(std::vector<double>), std::vector<double> q_0, double p, double h); // Euler's method for solving diffrential equations.
|
|
|
|
double growthMethod(double C, double k, double t); // General growth-based diffrential equations can be solved by seperation of variables.
|
|
|
|
std::vector<double> jacobian(double (*function)(std::vector<double>), std::vector<double> x); // Indeed, for functions with scalar outputs the Jacobians will be vectors.
|
|
std::vector<std::vector<double>> hessian(double (*function)(std::vector<double>), std::vector<double> x);
|
|
std::vector<std::vector<std::vector<double>>> thirdOrderTensor(double (*function)(std::vector<double>), std::vector<double> x);
|
|
|
|
double constantApproximation(double (*function)(std::vector<double>), std::vector<double> c);
|
|
double linearApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
|
|
double quadraticApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
|
|
double cubicApproximation(double (*function)(std::vector<double>), std::vector<double> c, std::vector<double> x);
|
|
|
|
double laplacian(double (*function)(std::vector<double>), std::vector<double> x); // laplacian
|
|
|
|
std::string secondPartialDerivativeTest(double (*function)(std::vector<double>), std::vector<double> x);
|
|
};
|
|
|
|
|
|
#endif /* NumericalAnalysis_hpp */
|