mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
84 lines
3.2 KiB
C++
84 lines
3.2 KiB
C++
#ifndef MLPP_ANN_H
|
|
#define MLPP_ANN_H
|
|
|
|
//
|
|
// ANN.hpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "core/object/reference.h"
|
|
|
|
#include "../hidden_layer/hidden_layer.h"
|
|
#include "../output_layer/output_layer.h"
|
|
|
|
#include "../hidden_layer/hidden_layer_old.h"
|
|
#include "../output_layer/output_layer_old.h"
|
|
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
class MLPPANN : public Reference {
|
|
GDCLASS(MLPPANN, Reference);
|
|
|
|
public:
|
|
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
|
real_t model_test(std::vector<real_t> x);
|
|
|
|
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
|
|
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
|
|
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
|
|
void momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool nag, bool ui = false);
|
|
void adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui = false);
|
|
void adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui = false);
|
|
void adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
void adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
void nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
void amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
|
|
|
|
real_t score();
|
|
void save(std::string file_name);
|
|
|
|
void set_learning_rate_scheduler(std::string type, real_t decay_constant);
|
|
void set_learning_rate_scheduler_drop(std::string type, real_t decay_constant, real_t drop_rate);
|
|
|
|
void add_layer(int n_hidden, std::string activation, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
|
void add_output_layer(std::string activation, std::string loss, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
|
|
|
MLPPANN(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set);
|
|
|
|
MLPPANN();
|
|
~MLPPANN();
|
|
|
|
protected:
|
|
real_t apply_learning_rate_scheduler(real_t learning_rate, real_t decay_constant, real_t epoch, real_t drop_rate);
|
|
|
|
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
|
|
|
|
void forward_pass();
|
|
void update_parameters(std::vector<std::vector<std::vector<real_t>>> hidden_layer_updations, std::vector<real_t> output_layer_updation, real_t learning_rate);
|
|
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> compute_gradients(std::vector<real_t> y_hat, std::vector<real_t> _output_set);
|
|
|
|
void print_ui(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> p_output_set);
|
|
|
|
static void _bind_methods();
|
|
|
|
std::vector<std::vector<real_t>> _input_set;
|
|
std::vector<real_t> _output_set;
|
|
std::vector<real_t> _y_hat;
|
|
|
|
std::vector<MLPPOldHiddenLayer> _network;
|
|
MLPPOldOutputLayer *_output_layer;
|
|
|
|
int _n;
|
|
int _k;
|
|
|
|
std::string _lr_scheduler;
|
|
real_t _decay_constant;
|
|
real_t _drop_rate;
|
|
};
|
|
|
|
#endif /* ANN_hpp */ |