mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
126 lines
3.1 KiB
C++
126 lines
3.1 KiB
C++
//
|
|
// PCA.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "pca.h"
|
|
#include "../data/data.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
Ref<MLPPMatrix> MLPPPCA::get_input_set() {
|
|
return _input_set;
|
|
}
|
|
void MLPPPCA::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
_input_set = val;
|
|
}
|
|
|
|
int MLPPPCA::get_k() {
|
|
return _k;
|
|
}
|
|
void MLPPPCA::set_k(const int val) {
|
|
_k = val;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPPCA::principal_components() {
|
|
ERR_FAIL_COND_V(!_input_set.is_valid() || _k == 0, Ref<MLPPMatrix>());
|
|
|
|
MLPPLinAlg alg;
|
|
MLPPData data;
|
|
|
|
MLPPLinAlg::SVDResult svr_res = alg.svd(alg.covnm(_input_set));
|
|
_x_normalized = data.mean_centering(_input_set);
|
|
|
|
Size2i svr_res_u_size = svr_res.U->size();
|
|
|
|
_u_reduce->resize(Size2i(_k, svr_res_u_size.y));
|
|
|
|
for (int i = 0; i < _k; ++i) {
|
|
for (int j = 0; j < svr_res_u_size.y; ++j) {
|
|
_u_reduce->set_element(j, i, svr_res.U->get_element(j, i));
|
|
}
|
|
}
|
|
|
|
_z = alg.matmultnm(alg.transposenm(_u_reduce), _x_normalized);
|
|
|
|
return _z;
|
|
}
|
|
|
|
// Simply tells us the percentage of variance maintained.
|
|
real_t MLPPPCA::score() {
|
|
ERR_FAIL_COND_V(!_input_set.is_valid() || _k == 0, 0);
|
|
|
|
MLPPLinAlg alg;
|
|
|
|
Ref<MLPPMatrix> x_approx = alg.matmultnm(_u_reduce, _z);
|
|
real_t num = 0;
|
|
real_t den = 0;
|
|
|
|
Size2i x_normalized_size = _x_normalized->size();
|
|
|
|
int x_normalized_size_y = x_normalized_size.y;
|
|
|
|
Ref<MLPPVector> x_approx_row_tmp;
|
|
x_approx_row_tmp.instance();
|
|
x_approx_row_tmp->resize(x_approx->size().x);
|
|
|
|
Ref<MLPPVector> x_normalized_row_tmp;
|
|
x_normalized_row_tmp.instance();
|
|
x_normalized_row_tmp->resize(x_normalized_size.x);
|
|
|
|
for (int i = 0; i < x_normalized_size_y; ++i) {
|
|
_x_normalized->get_row_into_mlpp_vector(i, x_normalized_row_tmp);
|
|
x_approx->get_row_into_mlpp_vector(i, x_approx_row_tmp);
|
|
|
|
num += alg.norm_sqv(alg.subtractionnv(x_normalized_row_tmp, x_approx_row_tmp));
|
|
}
|
|
|
|
num /= x_normalized_size_y;
|
|
|
|
for (int i = 0; i < x_normalized_size_y; ++i) {
|
|
_x_normalized->get_row_into_mlpp_vector(i, x_normalized_row_tmp);
|
|
|
|
den += alg.norm_sqv(x_normalized_row_tmp);
|
|
}
|
|
|
|
den /= x_normalized_size_y;
|
|
|
|
if (den == 0) {
|
|
den += 1e-10; // For numerical sanity as to not recieve a domain error
|
|
}
|
|
|
|
return 1 - num / den;
|
|
}
|
|
|
|
MLPPPCA::MLPPPCA(const Ref<MLPPMatrix> &p_input_set, int p_k) {
|
|
_k = p_k;
|
|
_input_set = p_input_set;
|
|
|
|
_x_normalized.instance();
|
|
_u_reduce.instance();
|
|
_z.instance();
|
|
}
|
|
|
|
MLPPPCA::MLPPPCA() {
|
|
_k = 0;
|
|
|
|
_x_normalized.instance();
|
|
_u_reduce.instance();
|
|
_z.instance();
|
|
}
|
|
MLPPPCA::~MLPPPCA() {
|
|
}
|
|
|
|
void MLPPPCA::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPPCA::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPPCA::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "get_input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_k"), &MLPPPCA::get_k);
|
|
ClassDB::bind_method(D_METHOD("set_k", "val"), &MLPPPCA::set_k);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
|
|
|
|
ClassDB::bind_method(D_METHOD("principal_components"), &MLPPPCA::principal_components);
|
|
ClassDB::bind_method(D_METHOD("score"), &MLPPPCA::score);
|
|
}
|