pmlpp/mlpp/c_log_log_reg/c_log_log_reg.cpp
2023-04-29 15:07:30 +02:00

286 lines
7.3 KiB
C++

//
// CLogLogReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "c_log_log_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <random>
Ref<MLPPVector> MLPPCLogLogReg::model_set_test(const Ref<MLPPMatrix> &X) {
return evaluatem(X);
}
real_t MLPPCLogLogReg::model_test(const Ref<MLPPVector> &x) {
return evaluatev(x);
}
void MLPPCLogLogReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
// Calculating the weight gradients
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(_input_set), alg.hadamard_productnv(error, avn.cloglog_derivv(_z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.cloglog_derivv(_z))) / _n;
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPCLogLogReg::mle(real_t learning_rate, int max_epoch, bool ui) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forward_pass();
while (true) {
cost_prev = cost(_y_hat, _output_set);
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
_weights = alg.additionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(_input_set), alg.hadamard_productnv(error, avn.cloglog_derivv(_z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias += learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.cloglog_derivv(_z))) / _n;
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPCLogLogReg::sgd(real_t learning_rate, int max_epoch, bool p_) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
forward_pass();
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> y_hat_row_tmp;
y_hat_row_tmp.instance();
y_hat_row_tmp->resize(1);
Ref<MLPPVector> output_set_row_tmp;
output_set_row_tmp.instance();
output_set_row_tmp->resize(1);
while (true) {
int output_index = distribution(generator);
_input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp);
real_t output_element_set = _output_set->element_get(output_index);
output_set_row_tmp->element_set(0, output_element_set);
real_t y_hat = evaluatev(input_set_row_tmp);
y_hat_row_tmp->element_set(0, y_hat);
real_t z = propagatev(input_set_row_tmp);
cost_prev = cost(y_hat_row_tmp, output_set_row_tmp);
real_t error = y_hat - output_element_set;
// Weight Updation
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error * Math::exp(z - Math::exp(z)), input_set_row_tmp));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Bias updation
bias -= learning_rate * error * exp(z - exp(z));
y_hat = evaluatev(input_set_row_tmp);
if (p_) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_row_tmp, output_set_row_tmp));
MLPPUtilities::print_ui_vb(_weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
void MLPPCLogLogReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool p_) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = evaluatem(current_input_batch);
Ref<MLPPVector> z = propagatem(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
Ref<MLPPVector> error = alg.subtractionnv(y_hat, current_output_batch);
// Calculating the weight gradients
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multnv(alg.transposenm(current_input_batch), alg.hadamard_productnv(error, avn.cloglog_derivv(z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.cloglog_derivv(z))) / _n;
forward_pass();
y_hat = evaluatem(current_input_batch);
if (p_) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output_batch));
MLPPUtilities::print_ui_vb(_weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
}
real_t MLPPCLogLogReg::score() {
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
}
MLPPCLogLogReg::MLPPCLogLogReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_y_hat.instance();
_y_hat->resize(_n);
MLPPUtilities utilities;
_weights.instance();
_weights->resize(_k);
utilities.weight_initializationv(_weights);
bias = utilities.bias_initializationr();
}
MLPPCLogLogReg::MLPPCLogLogReg() {
}
MLPPCLogLogReg::~MLPPCLogLogReg() {
}
real_t MLPPCLogLogReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
MLPPReg regularization;
MLPPCost mlpp_cost;
return mlpp_cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
}
real_t MLPPCLogLogReg::evaluatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.cloglog_normr(alg.dotnv(_weights, x) + bias);
}
real_t MLPPCLogLogReg::propagatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
return alg.dotnv(_weights, x) + bias;
}
Ref<MLPPVector> MLPPCLogLogReg::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.cloglog_normv(alg.scalar_addnv(bias, alg.mat_vec_multnv(X, _weights)));
}
Ref<MLPPVector> MLPPCLogLogReg::propagatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
return alg.scalar_addnv(bias, alg.mat_vec_multnv(X, _weights));
}
// cloglog ( wTx + b )
void MLPPCLogLogReg::forward_pass() {
MLPPActivation avn;
_z = propagatem(_input_set);
_y_hat = avn.cloglog_normv(_z);
}
void MLPPCLogLogReg::_bind_methods() {
}