pmlpp/mlpp/lin_alg/mlpp_matrix.cpp

3136 lines
72 KiB
C++

#include "mlpp_matrix.h"
#include "core/io/image.h"
#include "../stat/stat.h"
#include <random>
void MLPPMatrix::add_row(const Vector<real_t> &p_row) {
if (p_row.size() == 0) {
return;
}
if (_size.x == 0) {
_size.x = p_row.size();
}
ERR_FAIL_COND(_size.x != p_row.size());
int ci = data_size();
++_size.y;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_arr = p_row.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
void MLPPMatrix::add_row_pool_vector(const PoolRealArray &p_row) {
if (p_row.size() == 0) {
return;
}
if (_size.x == 0) {
_size.x = p_row.size();
}
ERR_FAIL_COND(_size.x != p_row.size());
int ci = data_size();
++_size.y;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
PoolRealArray::Read rread = p_row.read();
const real_t *row_arr = rread.ptr();
for (int i = 0; i < p_row.size(); ++i) {
_data[ci + i] = row_arr[i];
}
}
void MLPPMatrix::add_row_mlpp_vector(const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
int p_row_size = p_row->size();
if (p_row_size == 0) {
return;
}
if (_size.x == 0) {
_size.x = p_row_size;
}
ERR_FAIL_COND(_size.x != p_row_size);
int ci = data_size();
++_size.y;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < p_row_size; ++i) {
_data[ci + i] = row_ptr[i];
}
}
void MLPPMatrix::add_rows_mlpp_matrix(const Ref<MLPPMatrix> &p_other) {
ERR_FAIL_COND(!p_other.is_valid());
int other_data_size = p_other->data_size();
if (other_data_size == 0) {
return;
}
Size2i other_size = p_other->size();
if (_size.x == 0) {
_size.x = other_size.x;
}
ERR_FAIL_COND(other_size.x != _size.x);
int start_offset = data_size();
_size.y += other_size.y;
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
const real_t *other_ptr = p_other->ptr();
for (int i = 0; i < other_data_size; ++i) {
_data[start_offset + i] = other_ptr[i];
}
}
void MLPPMatrix::remove_row(int p_index) {
ERR_FAIL_INDEX(p_index, _size.y);
--_size.y;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
for (int i = p_index * _size.x; i < ds; ++i) {
_data[i] = _data[i + _size.x];
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
// Removes the item copying the last value into the position of the one to
// remove. It's generally faster than `remove`.
void MLPPMatrix::remove_row_unordered(int p_index) {
ERR_FAIL_INDEX(p_index, _size.y);
--_size.y;
int ds = data_size();
if (ds == 0) {
memfree(_data);
_data = NULL;
return;
}
int start_ind = p_index * _size.x;
int last_row_start_ind = _size.y * _size.x;
if (start_ind != last_row_start_ind) {
for (int i = 0; i < _size.x; ++i) {
_data[start_ind + i] = _data[last_row_start_ind + i];
}
}
_data = (real_t *)memrealloc(_data, data_size() * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
void MLPPMatrix::swap_row(int p_index_1, int p_index_2) {
ERR_FAIL_INDEX(p_index_1, _size.y);
ERR_FAIL_INDEX(p_index_2, _size.y);
int ind1_start = p_index_1 * _size.x;
int ind2_start = p_index_2 * _size.x;
for (int i = 0; i < _size.x; ++i) {
SWAP(_data[ind1_start + i], _data[ind2_start + i]);
}
}
void MLPPMatrix::resize(const Size2i &p_size) {
_size = p_size;
int ds = data_size();
if (ds == 0) {
if (_data) {
memfree(_data);
_data = NULL;
}
return;
}
_data = (real_t *)memrealloc(_data, ds * sizeof(real_t));
CRASH_COND_MSG(!_data, "Out of memory");
}
Vector<real_t> MLPPMatrix::get_row_vector(int p_index_y) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Vector<real_t>());
Vector<real_t> ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
int ind_start = p_index_y * _size.x;
real_t *row_ptr = ret.ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
PoolRealArray MLPPMatrix::get_row_pool_vector(int p_index_y) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, PoolRealArray());
PoolRealArray ret;
if (unlikely(_size.x == 0)) {
return ret;
}
ret.resize(_size.x);
int ind_start = p_index_y * _size.x;
PoolRealArray::Write w = ret.write();
real_t *row_ptr = w.ptr();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
Ref<MLPPVector> MLPPMatrix::get_row_mlpp_vector(int p_index_y) const {
ERR_FAIL_INDEX_V(p_index_y, _size.y, Ref<MLPPVector>());
Ref<MLPPVector> ret;
ret.instance();
if (unlikely(_size.x == 0)) {
return ret;
}
ret->resize(_size.x);
int ind_start = p_index_y * _size.x;
real_t *row_ptr = ret->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
return ret;
}
void MLPPMatrix::get_row_into_mlpp_vector(int p_index_y, Ref<MLPPVector> target) const {
ERR_FAIL_COND(!target.is_valid());
ERR_FAIL_INDEX(p_index_y, _size.y);
if (unlikely(target->size() != _size.x)) {
target->resize(_size.x);
}
int ind_start = p_index_y * _size.x;
real_t *row_ptr = target->ptrw();
for (int i = 0; i < _size.x; ++i) {
row_ptr[i] = _data[ind_start + i];
}
}
void MLPPMatrix::set_row_vector(int p_index_y, const Vector<real_t> &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
int ind_start = p_index_y * _size.x;
const real_t *row_ptr = p_row.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPMatrix::set_row_pool_vector(int p_index_y, const PoolRealArray &p_row) {
ERR_FAIL_COND(p_row.size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
int ind_start = p_index_y * _size.x;
PoolRealArray::Read r = p_row.read();
const real_t *row_ptr = r.ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPMatrix::set_row_mlpp_vector(int p_index_y, const Ref<MLPPVector> &p_row) {
ERR_FAIL_COND(!p_row.is_valid());
ERR_FAIL_COND(p_row->size() != _size.x);
ERR_FAIL_INDEX(p_index_y, _size.y);
int ind_start = p_index_y * _size.x;
const real_t *row_ptr = p_row->ptr();
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
void MLPPMatrix::fill(real_t p_val) {
if (!_data) {
return;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] = p_val;
}
}
Vector<real_t> MLPPMatrix::to_flat_vector() const {
Vector<real_t> ret;
ret.resize(data_size());
real_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
PoolRealArray MLPPMatrix::to_flat_pool_vector() const {
PoolRealArray pl;
if (data_size()) {
pl.resize(data_size());
typename PoolRealArray::Write w = pl.write();
real_t *dest = w.ptr();
for (int i = 0; i < data_size(); ++i) {
dest[i] = static_cast<real_t>(_data[i]);
}
}
return pl;
}
Vector<uint8_t> MLPPMatrix::to_flat_byte_array() const {
Vector<uint8_t> ret;
ret.resize(data_size() * sizeof(real_t));
uint8_t *w = ret.ptrw();
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
Ref<MLPPMatrix> MLPPMatrix::duplicate() const {
Ref<MLPPMatrix> ret;
ret.instance();
ret->set_from_mlpp_matrixr(*this);
return ret;
}
void MLPPMatrix::set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
resize(p_from->size());
for (int i = 0; i < p_from->data_size(); ++i) {
_data[i] = p_from->_data[i];
}
}
void MLPPMatrix::set_from_mlpp_matrixr(const MLPPMatrix &p_from) {
resize(p_from.size());
for (int i = 0; i < p_from.data_size(); ++i) {
_data[i] = p_from._data[i];
}
}
void MLPPMatrix::set_from_mlpp_vectors(const Vector<Ref<MLPPVector>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
if (!p_from[0].is_valid()) {
reset();
return;
}
resize(Size2i(p_from[0]->size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
const Ref<MLPPVector> &r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
void MLPPMatrix::set_from_mlpp_vectors_array(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
Ref<MLPPVector> v0 = p_from[0];
if (!v0.is_valid()) {
reset();
return;
}
resize(Size2i(v0->size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
Ref<MLPPVector> r = p_from[i];
ERR_CONTINUE(!r.is_valid());
ERR_CONTINUE(r->size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r->ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
void MLPPMatrix::set_from_vectors(const Vector<Vector<real_t>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
resize(Size2i(p_from[0].size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
const Vector<real_t> &r = p_from[i];
ERR_CONTINUE(r.size() != _size.x);
int start_index = i * _size.x;
const real_t *from_ptr = r.ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
void MLPPMatrix::set_from_arrays(const Array &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
PoolRealArray p0arr = p_from[0];
resize(Size2i(p0arr.size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (int i = 0; i < p_from.size(); ++i) {
PoolRealArray r = p_from[i];
ERR_CONTINUE(r.size() != _size.x);
int start_index = i * _size.x;
PoolRealArray::Read read = r.read();
const real_t *from_ptr = read.ptr();
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
/*
std::vector<std::vector<real_t>> MLPPMatrix::gramMatrix(std::vector<std::vector<real_t>> A) {
return matmult(transpose(A), A); // AtA
}
*/
/*
bool MLPPMatrix::linearIndependenceChecker(std::vector<std::vector<real_t>> A) {
if (det(gramMatrix(A), A.size()) == 0) {
return false;
}
return true;
}
*/
Ref<MLPPMatrix> MLPPMatrix::gaussian_noise(int n, int m) const {
std::random_device rd;
std::default_random_engine generator(rd());
std::normal_distribution<real_t> distribution(0, 1); // Standard normal distribution. Mean of 0, std of 1.
Ref<MLPPMatrix> A;
A.instance();
A->resize(Size2i(m, n));
int a_data_size = A->data_size();
real_t *a_ptr = A->ptrw();
for (int i = 0; i < a_data_size; ++i) {
a_ptr[i] = distribution(generator);
}
return A;
}
void MLPPMatrix::gaussian_noise_fill() {
std::random_device rd;
std::default_random_engine generator(rd());
std::normal_distribution<real_t> distribution(0, 1); // Standard normal distribution. Mean of 0, std of 1.
int a_data_size = data_size();
real_t *a_ptr = ptrw();
for (int i = 0; i < a_data_size; ++i) {
a_ptr[i] = distribution(generator);
}
}
void MLPPMatrix::add(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] += b_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::addn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = a_ptr[i] + b_ptr[i];
}
return C;
}
void MLPPMatrix::addb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) {
c_ptr[i] = a_ptr[i] + b_ptr[i];
}
}
void MLPPMatrix::sub(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] -= b_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::subn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = a_ptr[i] - b_ptr[i];
}
return C;
}
void MLPPMatrix::subb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) {
c_ptr[i] = a_ptr[i] - b_ptr[i];
}
}
void MLPPMatrix::mult(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
Size2i b_size = B->size();
ERR_FAIL_COND(_size.x != b_size.y || _size.y != b_size.x);
Ref<MLPPMatrix> A = duplicate();
Size2i a_size = A->size();
Size2i rs = Size2i(b_size.x, a_size.y);
if (_size != rs) {
resize(rs);
}
fill(0);
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int ay = 0; ay < a_size.y; ay++) {
for (int by = 0; by < b_size.y; by++) {
int ind_ay_by = A->calculate_index(ay, by);
for (int bx = 0; bx < b_size.x; bx++) {
int ind_ay_bx = calculate_index(ay, bx);
int ind_by_bx = B->calculate_index(by, bx);
c_ptr[ind_ay_bx] += a_ptr[ind_ay_by] * b_ptr[ind_by_bx];
}
}
}
}
Ref<MLPPMatrix> MLPPMatrix::multn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
Size2i b_size = B->size();
ERR_FAIL_COND_V_MSG(_size.y != b_size.x || _size.x != b_size.y, Ref<MLPPMatrix>(), "_size.y != b_size.x || _size.x != b_size.y _size: " + _size.operator String() + " b_size: " + b_size.operator String());
Size2i rs = Size2i(b_size.x, _size.y);
Ref<MLPPMatrix> C;
C.instance();
C->resize(rs);
C->fill(0);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
for (int i = 0; i < _size.y; i++) {
for (int k = 0; k < b_size.y; k++) {
int ind_i_k = calculate_index(i, k);
for (int j = 0; j < b_size.x; j++) {
int ind_i_j = C->calculate_index(i, j);
int ind_k_j = B->calculate_index(k, j);
c_ptr[ind_i_j] += a_ptr[ind_i_k] * b_ptr[ind_k_j];
}
}
}
return C;
}
void MLPPMatrix::multb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
Size2i b_size = B->size();
ERR_FAIL_COND_MSG(a_size.y != b_size.x || a_size.x != b_size.y, "a_size.y != b_size.x || a_size.x != b_size.y: a_size: " + a_size.operator String() + " b_size: " + b_size.operator String());
Size2i rs = Size2i(b_size.x, a_size.y);
if (unlikely(_size != rs)) {
resize(rs);
}
fill(0);
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < a_size.y; i++) {
for (int k = 0; k < b_size.y; k++) {
int ind_i_k = A->calculate_index(i, k);
for (int j = 0; j < b_size.x; j++) {
int ind_i_j = calculate_index(i, j);
int ind_k_j = B->calculate_index(k, j);
c_ptr[ind_i_j] += a_ptr[ind_i_k] * b_ptr[ind_k_j];
}
}
}
}
void MLPPMatrix::hadamard_product(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
int ds = data_size();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = c_ptr[i] * b_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::hadamard_productn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
int ds = data_size();
Ref<MLPPMatrix> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] * b_ptr[i];
}
return C;
}
void MLPPMatrix::hadamard_productb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (a_size != _size) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] * b_ptr[i];
}
}
void MLPPMatrix::kronecker_product(const Ref<MLPPMatrix> &B) {
// [1,1,1,1] [1,2,3,4,5]
// [1,1,1,1] [1,2,3,4,5]
// [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// Resulting matrix: A.size() * B.size()
// A[0].size() * B[0].size()
ERR_FAIL_COND(!B.is_valid());
Size2i a_size = size();
Size2i b_size = B->size();
Ref<MLPPMatrix> A = duplicate();
resize(Size2i(b_size.x * a_size.x, b_size.y * a_size.y));
const real_t *a_ptr = A->ptr();
Ref<MLPPVector> row_tmp;
row_tmp.instance();
row_tmp->resize(b_size.x);
for (int i = 0; i < _size.y; ++i) {
for (int j = 0; j < b_size.y; ++j) {
B->get_row_into_mlpp_vector(j, row_tmp);
Vector<Ref<MLPPVector>> row;
for (int k = 0; k < _size.x; ++k) {
row.push_back(row_tmp->scalar_multiplyn(a_ptr[A->calculate_index(i, k)]));
}
Ref<MLPPVector> flattened_row = row_tmp->flatten_vectorsn(row);
set_row_mlpp_vector(i * b_size.y + j, flattened_row);
}
}
}
Ref<MLPPMatrix> MLPPMatrix::kronecker_productn(const Ref<MLPPMatrix> &B) const {
// [1,1,1,1] [1,2,3,4,5]
// [1,1,1,1] [1,2,3,4,5]
// [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// Resulting matrix: A.size() * B.size()
// A[0].size() * B[0].size()
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
Size2i a_size = size();
Size2i b_size = B->size();
Ref<MLPPMatrix> C;
C.instance();
C->resize(Size2i(b_size.x * a_size.x, b_size.y * a_size.y));
const real_t *a_ptr = ptr();
Ref<MLPPVector> row_tmp;
row_tmp.instance();
row_tmp->resize(b_size.x);
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < b_size.y; ++j) {
B->get_row_into_mlpp_vector(j, row_tmp);
Vector<Ref<MLPPVector>> row;
for (int k = 0; k < a_size.x; ++k) {
row.push_back(row_tmp->scalar_multiplyn(a_ptr[calculate_index(i, k)]));
}
Ref<MLPPVector> flattened_row = row_tmp->flatten_vectorsn(row);
C->set_row_mlpp_vector(i * b_size.y + j, flattened_row);
}
}
return C;
}
void MLPPMatrix::kronecker_productb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
// [1,1,1,1] [1,2,3,4,5]
// [1,1,1,1] [1,2,3,4,5]
// [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]
// Resulting matrix: A.size() * B.size()
// A[0].size() * B[0].size()
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
Size2i b_size = B->size();
resize(Size2i(b_size.x * a_size.x, b_size.y * a_size.y));
const real_t *a_ptr = A->ptr();
Ref<MLPPVector> row_tmp;
row_tmp.instance();
row_tmp->resize(b_size.x);
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < b_size.y; ++j) {
B->get_row_into_mlpp_vector(j, row_tmp);
Vector<Ref<MLPPVector>> row;
for (int k = 0; k < a_size.x; ++k) {
row.push_back(row_tmp->scalar_multiplyn(a_ptr[A->calculate_index(i, k)]));
}
Ref<MLPPVector> flattened_row = row_tmp->flatten_vectorsn(row);
set_row_mlpp_vector(i * b_size.y + j, flattened_row);
}
}
}
void MLPPMatrix::element_wise_division(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
int ds = data_size();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] /= b_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::element_wise_divisionn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
int ds = data_size();
Ref<MLPPMatrix> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] / b_ptr[i];
}
return C;
}
void MLPPMatrix::element_wise_divisionb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (a_size != _size) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
for (int i = 0; i < ds; i++) {
c_ptr[i] = a_ptr[i] / b_ptr[i];
}
}
void MLPPMatrix::transpose() {
Ref<MLPPMatrix> A = duplicate();
Size2i a_size = A->size();
resize(Size2i(a_size.y, a_size.x));
const real_t *a_ptr = A->ptr();
real_t *at_ptr = ptrw();
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < a_size.x; ++j) {
at_ptr[calculate_index(j, i)] = a_ptr[A->calculate_index(i, j)];
}
}
}
Ref<MLPPMatrix> MLPPMatrix::transposen() const {
Ref<MLPPMatrix> AT;
AT.instance();
AT->resize(Size2i(_size.y, _size.x));
const real_t *a_ptr = ptr();
real_t *at_ptr = AT->ptrw();
for (int i = 0; i < _size.y; ++i) {
for (int j = 0; j < _size.x; ++j) {
at_ptr[AT->calculate_index(j, i)] = a_ptr[calculate_index(i, j)];
}
}
return AT;
}
void MLPPMatrix::transposeb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
Size2i s = Size2i(a_size.y, a_size.x);
if (_size != s) {
resize(s);
}
const real_t *a_ptr = A->ptr();
real_t *at_ptr = ptrw();
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < a_size.x; ++j) {
at_ptr[calculate_index(j, i)] = a_ptr[A->calculate_index(i, j)];
}
}
}
void MLPPMatrix::scalar_multiply(const real_t scalar) {
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] *= scalar;
}
}
Ref<MLPPMatrix> MLPPMatrix::scalar_multiplyn(const real_t scalar) const {
Ref<MLPPMatrix> AN = duplicate();
int ds = AN->data_size();
real_t *an_ptr = AN->ptrw();
for (int i = 0; i < ds; ++i) {
an_ptr[i] *= scalar;
}
return AN;
}
void MLPPMatrix::scalar_multiplyb(const real_t scalar, const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
if (A->size() != _size) {
resize(A->size());
}
int ds = data_size();
real_t *an_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
_data[i] = an_ptr[i] * scalar;
}
}
void MLPPMatrix::scalar_add(const real_t scalar) {
int ds = data_size();
for (int i = 0; i < ds; ++i) {
_data[i] += scalar;
}
}
Ref<MLPPMatrix> MLPPMatrix::scalar_addn(const real_t scalar) const {
Ref<MLPPMatrix> AN = duplicate();
int ds = AN->data_size();
real_t *an_ptr = AN->ptrw();
for (int i = 0; i < ds; ++i) {
an_ptr[i] += scalar;
}
return AN;
}
void MLPPMatrix::scalar_addb(const real_t scalar, const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
if (A->size() != _size) {
resize(A->size());
}
int ds = data_size();
real_t *an_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
_data[i] = an_ptr[i] + scalar;
}
}
void MLPPMatrix::log() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::log(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::logn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::log(a_ptr[i]);
}
return out;
}
void MLPPMatrix::logb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::log(a_ptr[i]);
}
}
void MLPPMatrix::log10() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::log10(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::log10n() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::log10(a_ptr[i]);
}
return out;
}
void MLPPMatrix::log10b(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::log10(a_ptr[i]);
}
}
void MLPPMatrix::exp() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::exp(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::expn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::exp(a_ptr[i]);
}
return out;
}
void MLPPMatrix::expb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::exp(a_ptr[i]);
}
}
void MLPPMatrix::erf() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::erf(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::erfn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::erf(a_ptr[i]);
}
return out;
}
void MLPPMatrix::erfb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::erf(a_ptr[i]);
}
}
void MLPPMatrix::exponentiate(real_t p) {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::pow(out_ptr[i], p);
}
}
Ref<MLPPMatrix> MLPPMatrix::exponentiaten(real_t p) const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
return out;
}
void MLPPMatrix::exponentiateb(const Ref<MLPPMatrix> &A, real_t p) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::pow(a_ptr[i], p);
}
}
void MLPPMatrix::sqrt() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sqrt(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::sqrtn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
return out;
}
void MLPPMatrix::sqrtb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sqrt(a_ptr[i]);
}
}
void MLPPMatrix::cbrt() {
exponentiate(real_t(1) / real_t(3));
}
Ref<MLPPMatrix> MLPPMatrix::cbrtn() const {
return exponentiaten(real_t(1) / real_t(3));
}
void MLPPMatrix::cbrtb(const Ref<MLPPMatrix> &A) {
exponentiateb(A, real_t(1) / real_t(3));
}
/*
std::vector<std::vector<real_t>> MLPPMatrix::matrixPower(std::vector<std::vector<real_t>> A, int n) {
std::vector<std::vector<real_t>> B = identity(A.size());
if (n == 0) {
return identity(A.size());
} else if (n < 0) {
A = inverse(A);
}
for (int i = 0; i < std::abs(n); i++) {
B = matmult(B, A);
}
return B;
}
*/
void MLPPMatrix::abs() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = ABS(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::absn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
return out;
}
void MLPPMatrix::absb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
Size2i a_size = A->size();
if (a_size != size()) {
resize(a_size);
}
int ds = data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = ABS(a_ptr[i]);
}
}
real_t MLPPMatrix::det(int d) const {
if (d == -1) {
return detb(Ref<MLPPMatrix>(this), _size.y);
} else {
return detb(Ref<MLPPMatrix>(this), d);
}
}
real_t MLPPMatrix::detb(const Ref<MLPPMatrix> &A, int d) const {
ERR_FAIL_COND_V(!A.is_valid(), 0);
real_t deter = 0;
Ref<MLPPMatrix> B;
B.instance();
B->resize(Size2i(d, d));
B->fill(0);
/* This is the base case in which the input is a 2x2 square matrix.
Recursion is performed unless and until we reach this base case,
such that we recieve a scalar as the result. */
if (d == 2) {
return A->get_element(0, 0) * A->get_element(1, 1) - A->get_element(0, 1) * A->get_element(1, 0);
} else {
for (int i = 0; i < d; i++) {
int sub_i = 0;
for (int j = 1; j < d; j++) {
int sub_j = 0;
for (int k = 0; k < d; k++) {
if (k == i) {
continue;
}
B->set_element(sub_i, sub_j, A->get_element(j, k));
sub_j++;
}
sub_i++;
}
deter += Math::pow(static_cast<real_t>(-1), static_cast<real_t>(i)) * A->get_element(0, i) * B->det(d - 1);
}
}
return deter;
}
/*
real_t MLPPMatrix::trace(std::vector<std::vector<real_t>> A) {
real_t trace = 0;
for (uint32_t i = 0; i < A.size(); i++) {
trace += A[i][i];
}
return trace;
}
*/
Ref<MLPPMatrix> MLPPMatrix::cofactor(int n, int i, int j) const {
Ref<MLPPMatrix> cof;
cof.instance();
cof->resize(_size);
int sub_i = 0;
int sub_j = 0;
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
if (row != i && col != j) {
cof->set_element(sub_i, sub_j++, get_element(row, col));
if (sub_j == n - 1) {
sub_j = 0;
sub_i++;
}
}
}
}
return cof;
}
void MLPPMatrix::cofactoro(int n, int i, int j, Ref<MLPPMatrix> out) const {
ERR_FAIL_COND(!out.is_valid());
if (unlikely(out->size() != _size)) {
out->resize(_size);
}
int sub_i = 0;
int sub_j = 0;
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
if (row != i && col != j) {
out->set_element(sub_i, sub_j++, get_element(row, col));
if (sub_j == n - 1) {
sub_j = 0;
sub_i++;
}
}
}
}
}
Ref<MLPPMatrix> MLPPMatrix::adjoint() const {
Ref<MLPPMatrix> adj;
ERR_FAIL_COND_V(_size.x != _size.y, adj);
//Resizing the initial adjoint matrix
adj.instance();
adj->resize(_size);
// Checking for the case where the given N x N matrix is a scalar
if (_size.y == 1) {
adj->set_element(0, 0, 1);
return adj;
}
if (_size.y == 2) {
adj->set_element(0, 0, get_element(1, 1));
adj->set_element(1, 1, get_element(0, 0));
adj->set_element(0, 1, -get_element(0, 1));
adj->set_element(1, 0, -get_element(1, 0));
return adj;
}
for (int i = 0; i < _size.y; i++) {
for (int j = 0; j < _size.x; j++) {
Ref<MLPPMatrix> cof = cofactor(_size.y, i, j);
// 1 if even, -1 if odd
int sign = (i + j) % 2 == 0 ? 1 : -1;
adj->set_element(j, i, sign * cof->det(int(_size.y) - 1));
}
}
return adj;
}
void MLPPMatrix::adjointo(Ref<MLPPMatrix> out) const {
ERR_FAIL_COND(!out.is_valid());
ERR_FAIL_COND(_size.x != _size.y);
//Resizing the initial adjoint matrix
if (unlikely(out->size() != _size)) {
out->resize(_size);
}
// Checking for the case where the given N x N matrix is a scalar
if (_size.y == 1) {
out->set_element(0, 0, 1);
return;
}
if (_size.y == 2) {
out->set_element(0, 0, get_element(1, 1));
out->set_element(1, 1, get_element(0, 0));
out->set_element(0, 1, -get_element(0, 1));
out->set_element(1, 0, -get_element(1, 0));
return;
}
for (int i = 0; i < _size.y; i++) {
for (int j = 0; j < _size.x; j++) {
Ref<MLPPMatrix> cof = cofactor(_size.y, i, j);
// 1 if even, -1 if odd
int sign = (i + j) % 2 == 0 ? 1 : -1;
out->set_element(j, i, sign * cof->det(int(_size.y) - 1));
}
}
}
Ref<MLPPMatrix> MLPPMatrix::inverse() const {
return adjoint()->scalar_multiplyn(1 / det());
}
void MLPPMatrix::inverseo(Ref<MLPPMatrix> out) const {
ERR_FAIL_COND(!out.is_valid());
out->set_from_mlpp_matrix(adjoint()->scalar_multiplyn(1 / det()));
}
Ref<MLPPMatrix> MLPPMatrix::pinverse() const {
return multn(Ref<MLPPMatrix>(this))->transposen()->inverse()->multn(transposen());
}
void MLPPMatrix::pinverseo(Ref<MLPPMatrix> out) const {
ERR_FAIL_COND(!out.is_valid());
out->set_from_mlpp_matrix(multn(Ref<MLPPMatrix>(this))->transposen()->inverse()->multn(transposen()));
}
Ref<MLPPMatrix> MLPPMatrix::zero_mat(int n, int m) const {
Ref<MLPPMatrix> mat;
mat.instance();
mat->resize(Size2i(m, n));
mat->fill(0);
return mat;
}
Ref<MLPPMatrix> MLPPMatrix::one_mat(int n, int m) const {
Ref<MLPPMatrix> mat;
mat.instance();
mat->resize(Size2i(m, n));
mat->fill(1);
return mat;
}
Ref<MLPPMatrix> MLPPMatrix::full_mat(int n, int m, int k) const {
Ref<MLPPMatrix> mat;
mat.instance();
mat->resize(Size2i(m, n));
mat->fill(k);
return mat;
}
void MLPPMatrix::sin() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sin(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::sinn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sin(a_ptr[i]);
}
return out;
}
void MLPPMatrix::sinb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
if (A->size() != _size) {
resize(A->size());
}
int ds = A->data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::sin(a_ptr[i]);
}
}
void MLPPMatrix::cos() {
int ds = data_size();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::cos(out_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::cosn() const {
Ref<MLPPMatrix> out;
out.instance();
out->resize(size());
int ds = data_size();
const real_t *a_ptr = ptr();
real_t *out_ptr = out->ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::cos(a_ptr[i]);
}
return out;
}
void MLPPMatrix::cosb(const Ref<MLPPMatrix> &A) {
ERR_FAIL_COND(!A.is_valid());
if (A->size() != _size) {
resize(A->size());
}
int ds = A->data_size();
const real_t *a_ptr = A->ptr();
real_t *out_ptr = ptrw();
for (int i = 0; i < ds; ++i) {
out_ptr[i] = Math::cos(a_ptr[i]);
}
}
/*
std::vector<std::vector<real_t>> MLPPMatrix::rotate(std::vector<std::vector<real_t>> A, real_t theta, int axis) {
std::vector<std::vector<real_t>> rotationMatrix = { { Math::cos(theta), -Math::sin(theta) }, { Math::sin(theta), Math::cos(theta) } };
if (axis == 0) {
rotationMatrix = { { 1, 0, 0 }, { 0, Math::cos(theta), -Math::sin(theta) }, { 0, Math::sin(theta), Math::cos(theta) } };
} else if (axis == 1) {
rotationMatrix = { { Math::cos(theta), 0, Math::sin(theta) }, { 0, 1, 0 }, { -Math::sin(theta), 0, Math::cos(theta) } };
} else if (axis == 2) {
rotationMatrix = { { Math::cos(theta), -Math::sin(theta), 0 }, { Math::sin(theta), Math::cos(theta), 0 }, { 1, 0, 0 } };
}
return matmult(A, rotationMatrix);
}
*/
void MLPPMatrix::max(const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!B.is_valid());
ERR_FAIL_COND(_size != B->size());
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = MAX(c_ptr[i], b_ptr[i]);
}
}
Ref<MLPPMatrix> MLPPMatrix::maxn(const Ref<MLPPMatrix> &B) const {
ERR_FAIL_COND_V(!B.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size != B->size(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> C;
C.instance();
C->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = C->ptrw();
int ds = data_size();
for (int i = 0; i < ds; ++i) {
c_ptr[i] = MAX(a_ptr[i], b_ptr[i]);
}
return C;
}
void MLPPMatrix::maxb(const Ref<MLPPMatrix> &A, const Ref<MLPPMatrix> &B) {
ERR_FAIL_COND(!A.is_valid() || !B.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size != B->size());
if (_size != a_size) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = B->ptr();
real_t *c_ptr = ptrw();
int data_size = A->data_size();
for (int i = 0; i < data_size; ++i) {
c_ptr[i] = MAX(a_ptr[i], b_ptr[i]);
}
}
/*
real_t MLPPMatrix::max(std::vector<std::vector<real_t>> A) {
return max(flatten(A));
}
real_t MLPPMatrix::min(std::vector<std::vector<real_t>> A) {
return min(flatten(A));
}
std::vector<std::vector<real_t>> MLPPMatrix::round(std::vector<std::vector<real_t>> A) {
std::vector<std::vector<real_t>> B;
B.resize(A.size());
for (uint32_t i = 0; i < B.size(); i++) {
B[i].resize(A[0].size());
}
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
B[i][j] = Math::round(A[i][j]);
}
}
return B;
}
*/
/*
real_t MLPPMatrix::norm_2(std::vector<std::vector<real_t>> A) {
real_t sum = 0;
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
sum += A[i][j] * A[i][j];
}
}
return Math::sqrt(sum);
}
*/
void MLPPMatrix::identity() {
fill(0);
real_t *im_ptr = ptrw();
int d = MIN(_size.x, _size.y);
for (int i = 0; i < d; i++) {
im_ptr[calculate_index(i, i)] = 1;
}
}
Ref<MLPPMatrix> MLPPMatrix::identityn() const {
Ref<MLPPMatrix> identity_mat;
identity_mat.instance();
identity_mat->resize(_size);
identity_mat->identity();
return identity_mat;
}
Ref<MLPPMatrix> MLPPMatrix::identity_mat(int d) const {
Ref<MLPPMatrix> identity_mat;
identity_mat.instance();
identity_mat->resize(Size2i(d, d));
identity_mat->fill(0);
real_t *im_ptr = identity_mat->ptrw();
for (int i = 0; i < d; i++) {
im_ptr[identity_mat->calculate_index(i, i)] = 1;
}
return identity_mat;
}
Ref<MLPPMatrix> MLPPMatrix::cov() const {
MLPPStat stat;
Ref<MLPPMatrix> cov_mat;
cov_mat.instance();
cov_mat->resize(_size);
Ref<MLPPVector> a_i_row_tmp;
a_i_row_tmp.instance();
a_i_row_tmp->resize(_size.x);
Ref<MLPPVector> a_j_row_tmp;
a_j_row_tmp.instance();
a_j_row_tmp->resize(_size.x);
for (int i = 0; i < _size.y; ++i) {
get_row_into_mlpp_vector(i, a_i_row_tmp);
for (int j = 0; j < _size.x; ++j) {
get_row_into_mlpp_vector(j, a_j_row_tmp);
cov_mat->set_element(i, j, stat.covariancev(a_i_row_tmp, a_j_row_tmp));
}
}
return cov_mat;
}
void MLPPMatrix::covo(Ref<MLPPMatrix> out) const {
ERR_FAIL_COND(!out.is_valid());
MLPPStat stat;
if (unlikely(out->size() != _size)) {
out->resize(_size);
}
Ref<MLPPVector> a_i_row_tmp;
a_i_row_tmp.instance();
a_i_row_tmp->resize(_size.x);
Ref<MLPPVector> a_j_row_tmp;
a_j_row_tmp.instance();
a_j_row_tmp->resize(_size.x);
for (int i = 0; i < _size.y; ++i) {
get_row_into_mlpp_vector(i, a_i_row_tmp);
for (int j = 0; j < _size.x; ++j) {
get_row_into_mlpp_vector(j, a_j_row_tmp);
out->set_element(i, j, stat.covariancev(a_i_row_tmp, a_j_row_tmp));
}
}
}
MLPPMatrix::EigenResult MLPPMatrix::eigen() const {
EigenResult res;
/*
A (the entered parameter) in most use cases will be X'X, XX', etc. and must be symmetric.
That simply means that 1) X' = X and 2) X is a square matrix. This function that computes the
eigenvalues of a matrix is utilizing Jacobi's method.
*/
real_t diagonal = true; // Perform the iterative Jacobi algorithm unless and until we reach a diagonal matrix which yields us the eigenvals.
HashMap<int, int> val_to_vec;
Ref<MLPPMatrix> a_new;
Ref<MLPPMatrix> a_mat = Ref<MLPPMatrix>(this);
Ref<MLPPMatrix> eigenvectors = identity_mat(a_mat->size().y);
Size2i a_size = a_mat->size();
do {
real_t a_ij = a_mat->get_element(0, 1);
real_t sub_i = 0;
real_t sub_j = 1;
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < a_size.x; ++j) {
real_t ca_ij = a_mat->get_element(i, j);
real_t abs_ca_ij = ABS(ca_ij);
if (i != j && abs_ca_ij > a_ij) {
a_ij = ca_ij;
sub_i = i;
sub_j = j;
} else if (i != j && abs_ca_ij == a_ij) {
if (i < sub_i) {
a_ij = ca_ij;
sub_i = i;
sub_j = j;
}
}
}
}
real_t a_ii = a_mat->get_element(sub_i, sub_i);
real_t a_jj = a_mat->get_element(sub_j, sub_j);
//real_t a_ji = a_mat->get_element(sub_j, sub_i);
real_t theta;
if (a_ii == a_jj) {
theta = M_PI / 4;
} else {
theta = 0.5 * atan(2 * a_ij / (a_ii - a_jj));
}
Ref<MLPPMatrix> P = identity_mat(a_mat->size().y);
P->set_element(sub_i, sub_j, -Math::sin(theta));
P->set_element(sub_i, sub_i, Math::cos(theta));
P->set_element(sub_j, sub_j, Math::cos(theta));
P->set_element(sub_j, sub_i, Math::sin(theta));
a_new = P->inverse()->multn(a_mat)->multn(P);
Size2i a_new_size = a_new->size();
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (i != j && Math::is_zero_approx(Math::round(a_new->get_element(i, j)))) {
a_new->set_element(i, j, 0);
}
}
}
bool non_zero = false;
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (i != j && Math::is_zero_approx(Math::round(a_new->get_element(i, j)))) {
non_zero = true;
}
}
}
if (non_zero) {
diagonal = false;
} else {
diagonal = true;
}
if (a_new->is_equal_approx(a_mat)) {
diagonal = true;
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (i != j) {
a_new->set_element(i, j, 0);
}
}
}
}
eigenvectors = eigenvectors->multn(P);
a_mat = a_new;
} while (!diagonal);
Ref<MLPPMatrix> a_new_prior = a_new->duplicate();
Size2i a_new_size = a_new->size();
// Bubble Sort. Should change this later.
for (int i = 0; i < a_new_size.y - 1; ++i) {
for (int j = 0; j < a_new_size.x - 1 - i; ++j) {
if (a_new->get_element(j, j) < a_new->get_element(j + 1, j + 1)) {
real_t temp = a_new->get_element(j + 1, j + 1);
a_new->set_element(j + 1, j + 1, a_new->get_element(j, j));
a_new->set_element(j, j, temp);
}
}
}
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (a_new->get_element(i, i) == a_new_prior->get_element(j, j)) {
val_to_vec[i] = j;
}
}
}
Ref<MLPPMatrix> eigen_temp = eigenvectors->duplicate();
Size2i eigenvectors_size = eigenvectors->size();
for (int i = 0; i < eigenvectors_size.y; ++i) {
for (int j = 0; j < eigenvectors_size.x; ++j) {
eigenvectors->set_element(i, j, eigen_temp->get_element(i, val_to_vec[j]));
}
}
res.eigen_vectors = eigenvectors;
res.eigen_values = a_new;
return res;
}
MLPPMatrix::EigenResult MLPPMatrix::eigenb(const Ref<MLPPMatrix> &A) const {
EigenResult res;
ERR_FAIL_COND_V(!A.is_valid(), res);
/*
A (the entered parameter) in most use cases will be X'X, XX', etc. and must be symmetric.
That simply means that 1) X' = X and 2) X is a square matrix. This function that computes the
eigenvalues of a matrix is utilizing Jacobi's method.
*/
real_t diagonal = true; // Perform the iterative Jacobi algorithm unless and until we reach a diagonal matrix which yields us the eigenvals.
HashMap<int, int> val_to_vec;
Ref<MLPPMatrix> a_new;
Ref<MLPPMatrix> a_mat = A;
Ref<MLPPMatrix> eigenvectors = identity_mat(a_mat->size().y);
Size2i a_size = a_mat->size();
do {
real_t a_ij = a_mat->get_element(0, 1);
real_t sub_i = 0;
real_t sub_j = 1;
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < a_size.x; ++j) {
real_t ca_ij = a_mat->get_element(i, j);
real_t abs_ca_ij = ABS(ca_ij);
if (i != j && abs_ca_ij > a_ij) {
a_ij = ca_ij;
sub_i = i;
sub_j = j;
} else if (i != j && abs_ca_ij == a_ij) {
if (i < sub_i) {
a_ij = ca_ij;
sub_i = i;
sub_j = j;
}
}
}
}
real_t a_ii = a_mat->get_element(sub_i, sub_i);
real_t a_jj = a_mat->get_element(sub_j, sub_j);
//real_t a_ji = a_mat->get_element(sub_j, sub_i);
real_t theta;
if (a_ii == a_jj) {
theta = M_PI / 4;
} else {
theta = 0.5 * atan(2 * a_ij / (a_ii - a_jj));
}
Ref<MLPPMatrix> P = identity_mat(a_mat->size().y);
P->set_element(sub_i, sub_j, -Math::sin(theta));
P->set_element(sub_i, sub_i, Math::cos(theta));
P->set_element(sub_j, sub_j, Math::cos(theta));
P->set_element(sub_j, sub_i, Math::sin(theta));
a_new = P->inverse()->multn(a_mat)->multn(P);
Size2i a_new_size = a_new->size();
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (i != j && Math::is_zero_approx(Math::round(a_new->get_element(i, j)))) {
a_new->set_element(i, j, 0);
}
}
}
bool non_zero = false;
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (i != j && Math::is_zero_approx(Math::round(a_new->get_element(i, j)))) {
non_zero = true;
}
}
}
if (non_zero) {
diagonal = false;
} else {
diagonal = true;
}
if (a_new->is_equal_approx(a_mat)) {
diagonal = true;
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (i != j) {
a_new->set_element(i, j, 0);
}
}
}
}
eigenvectors = eigenvectors->multn(P);
a_mat = a_new;
} while (!diagonal);
Ref<MLPPMatrix> a_new_prior = a_new->duplicate();
Size2i a_new_size = a_new->size();
// Bubble Sort. Should change this later.
for (int i = 0; i < a_new_size.y - 1; ++i) {
for (int j = 0; j < a_new_size.x - 1 - i; ++j) {
if (a_new->get_element(j, j) < a_new->get_element(j + 1, j + 1)) {
real_t temp = a_new->get_element(j + 1, j + 1);
a_new->set_element(j + 1, j + 1, a_new->get_element(j, j));
a_new->set_element(j, j, temp);
}
}
}
for (int i = 0; i < a_new_size.y; ++i) {
for (int j = 0; j < a_new_size.x; ++j) {
if (a_new->get_element(i, i) == a_new_prior->get_element(j, j)) {
val_to_vec[i] = j;
}
}
}
Ref<MLPPMatrix> eigen_temp = eigenvectors->duplicate();
Size2i eigenvectors_size = eigenvectors->size();
for (int i = 0; i < eigenvectors_size.y; ++i) {
for (int j = 0; j < eigenvectors_size.x; ++j) {
eigenvectors->set_element(i, j, eigen_temp->get_element(i, val_to_vec[j]));
}
}
res.eigen_vectors = eigenvectors;
res.eigen_values = a_new;
return res;
}
Array MLPPMatrix::eigen_bind() {
Array arr;
EigenResult r = eigen();
arr.push_back(r.eigen_values);
arr.push_back(r.eigen_vectors);
return arr;
}
Array MLPPMatrix::eigenb_bind(const Ref<MLPPMatrix> &A) {
Array arr;
ERR_FAIL_COND_V(!A.is_valid(), arr);
EigenResult r = eigenb(A);
arr.push_back(r.eigen_values);
arr.push_back(r.eigen_vectors);
return arr;
}
MLPPMatrix::SVDResult MLPPMatrix::svd() const {
SVDResult res;
EigenResult left_eigen = multn(transposen())->eigen();
EigenResult right_eigen = transposen()->multn(Ref<MLPPMatrix>(this))->eigen();
Ref<MLPPMatrix> singularvals = left_eigen.eigen_values->sqrtn();
Ref<MLPPMatrix> sigma = zero_mat(_size.y, _size.x);
Size2i singularvals_size = singularvals->size();
for (int i = 0; i < singularvals_size.y; ++i) {
for (int j = 0; j < singularvals_size.x; ++j) {
sigma->set_element(i, j, singularvals->get_element(i, j));
}
}
res.U = left_eigen.eigen_vectors;
res.S = sigma;
res.Vt = right_eigen.eigen_vectors;
return res;
}
MLPPMatrix::SVDResult MLPPMatrix::svdb(const Ref<MLPPMatrix> &A) const {
SVDResult res;
ERR_FAIL_COND_V(!A.is_valid(), res);
Size2i a_size = A->size();
EigenResult left_eigen = A->multn(A->transposen())->eigen();
EigenResult right_eigen = A->transposen()->multn(A)->eigen();
Ref<MLPPMatrix> singularvals = left_eigen.eigen_values->sqrtn();
Ref<MLPPMatrix> sigma = zero_mat(a_size.y, a_size.x);
Size2i singularvals_size = singularvals->size();
for (int i = 0; i < singularvals_size.y; ++i) {
for (int j = 0; j < singularvals_size.x; ++j) {
sigma->set_element(i, j, singularvals->get_element(i, j));
}
}
res.U = left_eigen.eigen_vectors;
res.S = sigma;
res.Vt = right_eigen.eigen_vectors;
return res;
}
Array MLPPMatrix::svd_bind() {
Array arr;
SVDResult r = svd();
arr.push_back(r.U);
arr.push_back(r.S);
arr.push_back(r.Vt);
return arr;
}
Array MLPPMatrix::svdb_bind(const Ref<MLPPMatrix> &A) {
Array arr;
ERR_FAIL_COND_V(!A.is_valid(), arr);
SVDResult r = svdb(A);
arr.push_back(r.U);
arr.push_back(r.S);
arr.push_back(r.Vt);
return arr;
}
/*
std::vector<real_t> MLPPMatrix::vectorProjection(std::vector<real_t> a, std::vector<real_t> b) {
real_t product = dot(a, b) / dot(a, a);
return scalarMultiply(product, a); // Projection of vector a onto b. Denotated as proj_a(b).
}
*/
/*
std::vector<std::vector<real_t>> MLPPMatrix::gramSchmidtProcess(std::vector<std::vector<real_t>> A) {
A = transpose(A); // C++ vectors lack a mechanism to directly index columns. So, we transpose *a copy* of A for this purpose for ease of use.
std::vector<std::vector<real_t>> B;
B.resize(A.size());
for (uint32_t i = 0; i < B.size(); i++) {
B[i].resize(A[0].size());
}
B[0] = A[0]; // We set a_1 = b_1 as an initial condition.
B[0] = scalarMultiply(1 / norm_2(B[0]), B[0]);
for (uint32_t i = 1; i < B.size(); i++) {
B[i] = A[i];
for (int j = i - 1; j >= 0; j--) {
B[i] = subtraction(B[i], vectorProjection(B[j], A[i]));
}
B[i] = scalarMultiply(1 / norm_2(B[i]), B[i]); // Very simply multiply all elements of vec B[i] by 1/||B[i]||_2
}
return transpose(B); // We re-transpose the marix.
}
*/
/*
MLPPMatrix::QRDResult MLPPMatrix::qrd(std::vector<std::vector<real_t>> A) {
QRDResult res;
res.Q = gramSchmidtProcess(A);
res.R = matmult(transpose(res.Q), A);
return res;
}
*/
/*
MLPPMatrix::CholeskyResult MLPPMatrix::cholesky(std::vector<std::vector<real_t>> A) {
std::vector<std::vector<real_t>> L = zeromat(A.size(), A[0].size());
for (uint32_t j = 0; j < L.size(); j++) { // Matrices entered must be square. No problem here.
for (uint32_t i = j; i < L.size(); i++) {
if (i == j) {
real_t sum = 0;
for (uint32_t k = 0; k < j; k++) {
sum += L[i][k] * L[i][k];
}
L[i][j] = Math::sqrt(A[i][j] - sum);
} else { // That is, i!=j
real_t sum = 0;
for (uint32_t k = 0; k < j; k++) {
sum += L[i][k] * L[j][k];
}
L[i][j] = (A[i][j] - sum) / L[j][j];
}
}
}
CholeskyResult res;
res.L = L;
res.Lt = transpose(L); // Indeed, L.T is our upper triangular matrix.
return res;
}
*/
/*
real_t MLPPMatrix::sum_elements(std::vector<std::vector<real_t>> A) {
real_t sum = 0;
for (uint32_t i = 0; i < A.size(); i++) {
for (uint32_t j = 0; j < A[i].size(); j++) {
sum += A[i][j];
}
}
return sum;
}
*/
Ref<MLPPVector> MLPPMatrix::flatten() const {
int ds = data_size();
Ref<MLPPVector> res;
res.instance();
res->resize(ds);
real_t *res_ptr = res->ptrw();
const real_t *a_ptr = ptr();
for (int i = 0; i < ds; ++i) {
res_ptr[i] = a_ptr[i];
}
return res;
}
void MLPPMatrix::flatteno(Ref<MLPPVector> out) const {
ERR_FAIL_COND(!out.is_valid());
int ds = data_size();
if (unlikely(out->size() != ds)) {
out->resize(ds);
}
real_t *res_ptr = out->ptrw();
const real_t *a_ptr = ptr();
for (int i = 0; i < ds; ++i) {
res_ptr[i] = a_ptr[i];
}
}
/*
std::vector<real_t> MLPPMatrix::solve(std::vector<std::vector<real_t>> A, std::vector<real_t> b) {
return mat_vec_mult(inverse(A), b);
}
bool MLPPMatrix::positiveDefiniteChecker(std::vector<std::vector<real_t>> A) {
auto eig_result = eig(A);
auto eigenvectors = std::get<0>(eig_result);
auto eigenvals = std::get<1>(eig_result);
std::vector<real_t> eigenvals_vec;
for (uint32_t i = 0; i < eigenvals.size(); i++) {
eigenvals_vec.push_back(eigenvals[i][i]);
}
for (uint32_t i = 0; i < eigenvals_vec.size(); i++) {
if (eigenvals_vec[i] <= 0) { // Simply check to ensure all eigenvalues are positive.
return false;
}
}
return true;
}
bool MLPPMatrix::negativeDefiniteChecker(std::vector<std::vector<real_t>> A) {
auto eig_result = eig(A);
auto eigenvectors = std::get<0>(eig_result);
auto eigenvals = std::get<1>(eig_result);
std::vector<real_t> eigenvals_vec;
for (uint32_t i = 0; i < eigenvals.size(); i++) {
eigenvals_vec.push_back(eigenvals[i][i]);
}
for (uint32_t i = 0; i < eigenvals_vec.size(); i++) {
if (eigenvals_vec[i] >= 0) { // Simply check to ensure all eigenvalues are negative.
return false;
}
}
return true;
}
bool MLPPMatrix::zeroEigenvalue(std::vector<std::vector<real_t>> A) {
auto eig_result = eig(A);
auto eigenvectors = std::get<0>(eig_result);
auto eigenvals = std::get<1>(eig_result);
std::vector<real_t> eigenvals_vec;
for (uint32_t i = 0; i < eigenvals.size(); i++) {
eigenvals_vec.push_back(eigenvals[i][i]);
}
for (uint32_t i = 0; i < eigenvals_vec.size(); i++) {
if (eigenvals_vec[i] == 0) {
return true;
}
}
return false;
}
*/
Ref<MLPPVector> MLPPMatrix::mult_vec(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPMatrix>());
int b_size = b->size();
ERR_FAIL_COND_V(_size.x < b->size(), Ref<MLPPMatrix>());
Ref<MLPPVector> c;
c.instance();
c->resize(_size.y);
c->fill(0);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *c_ptr = c->ptrw();
for (int i = 0; i < _size.y; ++i) {
for (int k = 0; k < b_size; ++k) {
int mat_index = calculate_index(i, k);
c_ptr[i] += a_ptr[mat_index] * b_ptr[k];
}
}
return c;
}
void MLPPMatrix::mult_veco(const Ref<MLPPVector> &b, Ref<MLPPVector> out) {
ERR_FAIL_COND(!out.is_valid() || !b.is_valid());
int b_size = b->size();
ERR_FAIL_COND(_size.x < b->size());
if (unlikely(out->size() != _size.y)) {
out->resize(_size.y);
}
out->fill(0);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *c_ptr = out->ptrw();
for (int i = 0; i < _size.y; ++i) {
for (int k = 0; k < b_size; ++k) {
int mat_index = calculate_index(i, k);
c_ptr[i] += a_ptr[mat_index] * b_ptr[k];
}
}
}
void MLPPMatrix::add_vec(const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!b.is_valid());
ERR_FAIL_COND(_size.x != b->size());
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *ret_ptr = ptrw();
for (int i = 0; i < _size.y; ++i) {
for (int j = 0; j < _size.x; ++j) {
int mat_index = calculate_index(i, j);
ret_ptr[mat_index] = a_ptr[mat_index] + b_ptr[j];
}
}
}
Ref<MLPPMatrix> MLPPMatrix::add_vecn(const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!b.is_valid(), Ref<MLPPMatrix>());
ERR_FAIL_COND_V(_size.x != b->size(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> ret;
ret.instance();
ret->resize(_size);
const real_t *a_ptr = ptr();
const real_t *b_ptr = b->ptr();
real_t *ret_ptr = ret->ptrw();
for (int i = 0; i < _size.y; ++i) {
for (int j = 0; j < _size.x; ++j) {
int mat_index = calculate_index(i, j);
ret_ptr[mat_index] = a_ptr[mat_index] + b_ptr[j];
}
}
return ret;
}
void MLPPMatrix::add_vecb(const Ref<MLPPMatrix> &A, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!A.is_valid() || !b.is_valid());
Size2i a_size = A->size();
ERR_FAIL_COND(a_size.x != b->size());
if (unlikely(_size != a_size)) {
resize(a_size);
}
const real_t *a_ptr = A->ptr();
const real_t *b_ptr = b->ptr();
real_t *ret_ptr = ptrw();
for (int i = 0; i < a_size.y; ++i) {
for (int j = 0; j < a_size.x; ++j) {
int mat_index = A->calculate_index(i, j);
ret_ptr[mat_index] = a_ptr[mat_index] + b_ptr[j];
}
}
}
void MLPPMatrix::outer_product(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
ERR_FAIL_COND(!a.is_valid() || !b.is_valid());
Size2i s = Size2i(b->size(), a->size());
if (unlikely(_size != s)) {
resize(s);
}
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
for (int i = 0; i < s.y; ++i) {
real_t curr_a = a_ptr[i];
for (int j = 0; j < s.x; ++j) {
set_element(i, j, curr_a * b_ptr[j]);
}
}
}
Ref<MLPPMatrix> MLPPMatrix::outer_productn(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) const {
ERR_FAIL_COND_V(!a.is_valid() || !b.is_valid(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> C;
C.instance();
Size2i s = Size2i(b->size(), a->size());
C->resize(s);
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
for (int i = 0; i < s.y; ++i) {
real_t curr_a = a_ptr[i];
for (int j = 0; j < s.x; ++j) {
C->set_element(i, j, curr_a * b_ptr[j]);
}
}
return C;
}
void MLPPMatrix::set_diagonal(const Ref<MLPPVector> &a) {
ERR_FAIL_COND(!a.is_valid());
int a_size = a->size();
int ms = MIN(_size.x, _size.y);
ms = MIN(ms, a_size);
if (ms <= 0) {
return;
}
const real_t *a_ptr = a->ptr();
real_t *b_ptr = ptrw();
for (int i = 0; i < ms; ++i) {
b_ptr[calculate_index(i, i)] = a_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::set_diagonaln(const Ref<MLPPVector> &a) const {
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> B = duplicate();
int a_size = a->size();
int ms = MIN(_size.x, _size.y);
ms = MIN(ms, a_size);
if (ms <= 0) {
return B;
}
const real_t *a_ptr = a->ptr();
real_t *b_ptr = B->ptrw();
for (int i = 0; i < ms; ++i) {
b_ptr[B->calculate_index(i, i)] = a_ptr[i];
}
return B;
}
void MLPPMatrix::diagonal_zeroed(const Ref<MLPPVector> &a) {
fill(0);
ERR_FAIL_COND(!a.is_valid());
int a_size = a->size();
int ms = MIN(_size.x, _size.y);
ms = MIN(ms, a_size);
if (ms <= 0) {
return;
}
const real_t *a_ptr = a->ptr();
real_t *b_ptr = ptrw();
for (int i = 0; i < ms; ++i) {
b_ptr[calculate_index(i, i)] = a_ptr[i];
}
}
Ref<MLPPMatrix> MLPPMatrix::diagonal_zeroedn(const Ref<MLPPVector> &a) const {
ERR_FAIL_COND_V(!a.is_valid(), Ref<MLPPMatrix>());
Ref<MLPPMatrix> B;
B.instance();
B->resize(_size);
B->fill(0);
int a_size = a->size();
int ms = MIN(_size.x, _size.y);
ms = MIN(ms, a_size);
if (ms <= 0) {
return B;
}
const real_t *a_ptr = a->ptr();
real_t *b_ptr = B->ptrw();
for (int i = 0; i < ms; ++i) {
b_ptr[B->calculate_index(i, i)] = a_ptr[i];
}
return B;
}
bool MLPPMatrix::is_equal_approx(const Ref<MLPPMatrix> &p_with, real_t tolerance) const {
ERR_FAIL_COND_V(!p_with.is_valid(), false);
if (unlikely(this == p_with.ptr())) {
return true;
}
if (_size != p_with->size()) {
return false;
}
int ds = data_size();
for (int i = 0; i < ds; ++i) {
if (!Math::is_equal_approx(_data[i], p_with->_data[i], tolerance)) {
return false;
}
}
return true;
}
Ref<Image> MLPPMatrix::get_as_image() const {
Ref<Image> image;
image.instance();
get_into_image(image);
return image;
}
void MLPPMatrix::get_into_image(Ref<Image> out) const {
ERR_FAIL_COND(!out.is_valid());
if (data_size() == 0) {
out->clear();
return;
}
PoolByteArray arr;
int ds = data_size();
arr.resize(ds);
PoolByteArray::Write w = arr.write();
uint8_t *wptr = w.ptr();
for (int i = 0; i < ds; ++i) {
wptr[i] = static_cast<uint8_t>(_data[i] * 255.0);
}
out->create(_size.x, _size.y, false, Image::FORMAT_L8, arr);
}
void MLPPMatrix::set_from_image(const Ref<Image> &p_img, const int p_image_channel) {
ERR_FAIL_COND(!p_img.is_valid());
ERR_FAIL_INDEX(p_image_channel, 4);
Size2i img_size = Size2i(p_img->get_width(), p_img->get_height());
if (img_size != _size) {
resize(img_size);
}
Ref<Image> img = p_img;
img->lock();
for (int y = 0; y < _size.y; ++y) {
for (int x = 0; x < _size.x; ++x) {
Color c = img->get_pixel(x, y);
set_element(y, x, c[p_image_channel]);
}
}
img->unlock();
}
String MLPPMatrix::to_string() {
String str;
str += "[MLPPMatrix: \n";
for (int y = 0; y < _size.y; ++y) {
str += " [ ";
for (int x = 0; x < _size.x; ++x) {
str += String::num(_data[_size.x * y + x]);
str += " ";
}
str += "]\n";
}
str += "]";
return str;
}
MLPPMatrix::MLPPMatrix() {
_data = NULL;
}
MLPPMatrix::MLPPMatrix(const MLPPMatrix &p_from) {
_data = NULL;
resize(p_from.size());
for (int i = 0; i < p_from.data_size(); ++i) {
_data[i] = p_from._data[i];
}
}
MLPPMatrix::MLPPMatrix(const Vector<Vector<real_t>> &p_from) {
_data = NULL;
set_from_vectors(p_from);
}
MLPPMatrix::MLPPMatrix(const Array &p_from) {
_data = NULL;
set_from_arrays(p_from);
}
MLPPMatrix::~MLPPMatrix() {
if (_data) {
reset();
}
}
std::vector<real_t> MLPPMatrix::to_flat_std_vector() const {
std::vector<real_t> ret;
ret.resize(data_size());
real_t *w = &ret[0];
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
void MLPPMatrix::set_from_std_vectors(const std::vector<std::vector<real_t>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
resize(Size2i(p_from[0].size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (uint32_t i = 0; i < p_from.size(); ++i) {
const std::vector<real_t> &r = p_from[i];
ERR_CONTINUE(r.size() != static_cast<uint32_t>(_size.x));
int start_index = i * _size.x;
const real_t *from_ptr = &r[0];
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
std::vector<std::vector<real_t>> MLPPMatrix::to_std_vector() {
std::vector<std::vector<real_t>> ret;
ret.resize(_size.y);
for (int i = 0; i < _size.y; ++i) {
std::vector<real_t> row;
for (int j = 0; j < _size.x; ++j) {
row.push_back(_data[calculate_index(i, j)]);
}
ret[i] = row;
}
return ret;
}
void MLPPMatrix::set_row_std_vector(int p_index_y, const std::vector<real_t> &p_row) {
ERR_FAIL_COND(p_row.size() != static_cast<uint32_t>(_size.x));
ERR_FAIL_INDEX(p_index_y, _size.y);
int ind_start = p_index_y * _size.x;
const real_t *row_ptr = &p_row[0];
for (int i = 0; i < _size.x; ++i) {
_data[ind_start + i] = row_ptr[i];
}
}
MLPPMatrix::MLPPMatrix(const std::vector<std::vector<real_t>> &p_from) {
_data = NULL;
set_from_std_vectors(p_from);
}
void MLPPMatrix::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_row", "row"), &MLPPMatrix::add_row_pool_vector);
ClassDB::bind_method(D_METHOD("add_row_mlpp_vector", "row"), &MLPPMatrix::add_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("add_rows_mlpp_matrix", "other"), &MLPPMatrix::add_rows_mlpp_matrix);
ClassDB::bind_method(D_METHOD("remove_row", "index"), &MLPPMatrix::remove_row);
ClassDB::bind_method(D_METHOD("remove_row_unordered", "index"), &MLPPMatrix::remove_row_unordered);
ClassDB::bind_method(D_METHOD("swap_row", "index_1", "index_2"), &MLPPMatrix::swap_row);
ClassDB::bind_method(D_METHOD("clear"), &MLPPMatrix::clear);
ClassDB::bind_method(D_METHOD("reset"), &MLPPMatrix::reset);
ClassDB::bind_method(D_METHOD("empty"), &MLPPMatrix::empty);
ClassDB::bind_method(D_METHOD("data_size"), &MLPPMatrix::data_size);
ClassDB::bind_method(D_METHOD("size"), &MLPPMatrix::size);
ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPMatrix::resize);
ClassDB::bind_method(D_METHOD("get_element_index", "index"), &MLPPMatrix::get_element_index);
ClassDB::bind_method(D_METHOD("set_element_index", "index", "val"), &MLPPMatrix::set_element_index);
ClassDB::bind_method(D_METHOD("get_element", "index_y", "index_x"), &MLPPMatrix::get_element);
ClassDB::bind_method(D_METHOD("set_element", "index_y", "index_x", "val"), &MLPPMatrix::set_element);
ClassDB::bind_method(D_METHOD("get_row_pool_vector", "index_y"), &MLPPMatrix::get_row_pool_vector);
ClassDB::bind_method(D_METHOD("get_row_mlpp_vector", "index_y"), &MLPPMatrix::get_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("get_row_into_mlpp_vector", "index_y", "target"), &MLPPMatrix::get_row_into_mlpp_vector);
ClassDB::bind_method(D_METHOD("set_row_pool_vector", "index_y", "row"), &MLPPMatrix::set_row_pool_vector);
ClassDB::bind_method(D_METHOD("set_row_mlpp_vector", "index_y", "row"), &MLPPMatrix::set_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPMatrix::fill);
ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPMatrix::to_flat_pool_vector);
ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPMatrix::to_flat_byte_array);
ClassDB::bind_method(D_METHOD("duplicate"), &MLPPMatrix::duplicate);
ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPMatrix::set_from_mlpp_vectors_array);
ClassDB::bind_method(D_METHOD("set_from_arrays", "from"), &MLPPMatrix::set_from_arrays);
ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPMatrix::set_from_mlpp_matrix);
ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPMatrix::is_equal_approx, CMP_EPSILON);
ClassDB::bind_method(D_METHOD("get_as_image"), &MLPPMatrix::get_as_image);
ClassDB::bind_method(D_METHOD("get_into_image", "out"), &MLPPMatrix::get_into_image);
ClassDB::bind_method(D_METHOD("set_from_image", "img", "image_channel"), &MLPPMatrix::set_from_image);
ClassDB::bind_method(D_METHOD("gaussian_noise", "n", "m"), &MLPPMatrix::gaussian_noise);
ClassDB::bind_method(D_METHOD("gaussian_noise_fill"), &MLPPMatrix::gaussian_noise_fill);
ClassDB::bind_method(D_METHOD("add", "B"), &MLPPMatrix::add);
ClassDB::bind_method(D_METHOD("addn", "B"), &MLPPMatrix::addn);
ClassDB::bind_method(D_METHOD("addb", "A", "B"), &MLPPMatrix::addb);
ClassDB::bind_method(D_METHOD("sub", "B"), &MLPPMatrix::sub);
ClassDB::bind_method(D_METHOD("subn", "B"), &MLPPMatrix::subn);
ClassDB::bind_method(D_METHOD("subb", "A", "B"), &MLPPMatrix::subb);
ClassDB::bind_method(D_METHOD("mult", "B"), &MLPPMatrix::mult);
ClassDB::bind_method(D_METHOD("multn", "B"), &MLPPMatrix::multn);
ClassDB::bind_method(D_METHOD("multb", "A", "B"), &MLPPMatrix::multb);
ClassDB::bind_method(D_METHOD("hadamard_product", "B"), &MLPPMatrix::hadamard_product);
ClassDB::bind_method(D_METHOD("hadamard_productn", "B"), &MLPPMatrix::hadamard_productn);
ClassDB::bind_method(D_METHOD("hadamard_productb", "A", "B"), &MLPPMatrix::hadamard_productb);
ClassDB::bind_method(D_METHOD("kronecker_product", "B"), &MLPPMatrix::kronecker_product);
ClassDB::bind_method(D_METHOD("kronecker_productn", "B"), &MLPPMatrix::kronecker_productn);
ClassDB::bind_method(D_METHOD("kronecker_productb", "A", "B"), &MLPPMatrix::kronecker_productb);
ClassDB::bind_method(D_METHOD("element_wise_division", "B"), &MLPPMatrix::element_wise_division);
ClassDB::bind_method(D_METHOD("element_wise_divisionn", "B"), &MLPPMatrix::element_wise_divisionn);
ClassDB::bind_method(D_METHOD("element_wise_divisionb", "A", "B"), &MLPPMatrix::element_wise_divisionb);
ClassDB::bind_method(D_METHOD("transpose"), &MLPPMatrix::transpose);
ClassDB::bind_method(D_METHOD("transposen"), &MLPPMatrix::transposen);
ClassDB::bind_method(D_METHOD("transposeb", "A"), &MLPPMatrix::transposeb);
ClassDB::bind_method(D_METHOD("scalar_multiply", "scalar"), &MLPPMatrix::scalar_multiply);
ClassDB::bind_method(D_METHOD("scalar_multiplyn", "scalar"), &MLPPMatrix::scalar_multiplyn);
ClassDB::bind_method(D_METHOD("scalar_multiplyb", "scalar", "A"), &MLPPMatrix::scalar_multiplyb);
ClassDB::bind_method(D_METHOD("scalar_add", "scalar"), &MLPPMatrix::scalar_add);
ClassDB::bind_method(D_METHOD("scalar_addn", "scalar"), &MLPPMatrix::scalar_addn);
ClassDB::bind_method(D_METHOD("scalar_addb", "scalar", "A"), &MLPPMatrix::scalar_addb);
ClassDB::bind_method(D_METHOD("log"), &MLPPMatrix::log);
ClassDB::bind_method(D_METHOD("logn"), &MLPPMatrix::logn);
ClassDB::bind_method(D_METHOD("logb", "A"), &MLPPMatrix::logb);
ClassDB::bind_method(D_METHOD("log10"), &MLPPMatrix::log10);
ClassDB::bind_method(D_METHOD("log10n"), &MLPPMatrix::log10n);
ClassDB::bind_method(D_METHOD("log10b", "A"), &MLPPMatrix::log10b);
ClassDB::bind_method(D_METHOD("exp"), &MLPPMatrix::exp);
ClassDB::bind_method(D_METHOD("expn"), &MLPPMatrix::expn);
ClassDB::bind_method(D_METHOD("expb", "A"), &MLPPMatrix::expb);
ClassDB::bind_method(D_METHOD("erf"), &MLPPMatrix::erf);
ClassDB::bind_method(D_METHOD("erfn"), &MLPPMatrix::erfn);
ClassDB::bind_method(D_METHOD("erfb", "A"), &MLPPMatrix::erfb);
ClassDB::bind_method(D_METHOD("exponentiate", "p"), &MLPPMatrix::exponentiate);
ClassDB::bind_method(D_METHOD("exponentiaten", "p"), &MLPPMatrix::exponentiaten);
ClassDB::bind_method(D_METHOD("exponentiateb", "A", "p"), &MLPPMatrix::exponentiateb);
ClassDB::bind_method(D_METHOD("sqrt"), &MLPPMatrix::sqrt);
ClassDB::bind_method(D_METHOD("sqrtn"), &MLPPMatrix::sqrtn);
ClassDB::bind_method(D_METHOD("sqrtb", "A"), &MLPPMatrix::sqrtb);
ClassDB::bind_method(D_METHOD("cbrt"), &MLPPMatrix::cbrt);
ClassDB::bind_method(D_METHOD("cbrtn"), &MLPPMatrix::cbrtn);
ClassDB::bind_method(D_METHOD("cbrtb", "A"), &MLPPMatrix::cbrtb);
ClassDB::bind_method(D_METHOD("abs"), &MLPPMatrix::abs);
ClassDB::bind_method(D_METHOD("absn"), &MLPPMatrix::absn);
ClassDB::bind_method(D_METHOD("absb", "A"), &MLPPMatrix::absb);
ClassDB::bind_method(D_METHOD("det", "d"), &MLPPMatrix::det, -1);
ClassDB::bind_method(D_METHOD("detb", "A", "d"), &MLPPMatrix::detb);
ClassDB::bind_method(D_METHOD("cofactor", "n", "i", "j"), &MLPPMatrix::cofactor);
ClassDB::bind_method(D_METHOD("cofactoro", "n", "i", "j", "out"), &MLPPMatrix::cofactoro);
ClassDB::bind_method(D_METHOD("adjoint"), &MLPPMatrix::adjoint);
ClassDB::bind_method(D_METHOD("adjointo", "out"), &MLPPMatrix::adjointo);
ClassDB::bind_method(D_METHOD("inverse"), &MLPPMatrix::inverse);
ClassDB::bind_method(D_METHOD("inverseo", "out"), &MLPPMatrix::inverseo);
ClassDB::bind_method(D_METHOD("pinverse"), &MLPPMatrix::pinverse);
ClassDB::bind_method(D_METHOD("pinverseo", "out"), &MLPPMatrix::pinverseo);
ClassDB::bind_method(D_METHOD("zero_mat", "n", "m"), &MLPPMatrix::zero_mat);
ClassDB::bind_method(D_METHOD("one_mat", "n", "m"), &MLPPMatrix::one_mat);
ClassDB::bind_method(D_METHOD("full_mat", "n", "m", "k"), &MLPPMatrix::full_mat);
ClassDB::bind_method(D_METHOD("sin"), &MLPPMatrix::sin);
ClassDB::bind_method(D_METHOD("sinn"), &MLPPMatrix::sinn);
ClassDB::bind_method(D_METHOD("sinb", "A"), &MLPPMatrix::sinb);
ClassDB::bind_method(D_METHOD("cos"), &MLPPMatrix::cos);
ClassDB::bind_method(D_METHOD("cosn"), &MLPPMatrix::cosn);
ClassDB::bind_method(D_METHOD("cosb", "A"), &MLPPMatrix::cosb);
ClassDB::bind_method(D_METHOD("max", "B"), &MLPPMatrix::max);
ClassDB::bind_method(D_METHOD("maxn", "B"), &MLPPMatrix::maxn);
ClassDB::bind_method(D_METHOD("maxb", "A", "B"), &MLPPMatrix::maxb);
ClassDB::bind_method(D_METHOD("identity"), &MLPPMatrix::identity);
ClassDB::bind_method(D_METHOD("identityn"), &MLPPMatrix::identityn);
ClassDB::bind_method(D_METHOD("identity_mat", "d"), &MLPPMatrix::identity_mat);
ClassDB::bind_method(D_METHOD("cov"), &MLPPMatrix::cov);
ClassDB::bind_method(D_METHOD("covo", "out"), &MLPPMatrix::covo);
ClassDB::bind_method(D_METHOD("eigen"), &MLPPMatrix::eigen_bind);
ClassDB::bind_method(D_METHOD("eigenb", "A"), &MLPPMatrix::eigenb_bind);
ClassDB::bind_method(D_METHOD("svd"), &MLPPMatrix::svd_bind);
ClassDB::bind_method(D_METHOD("svdb", "A"), &MLPPMatrix::svdb_bind);
ClassDB::bind_method(D_METHOD("flatten"), &MLPPMatrix::flatten);
ClassDB::bind_method(D_METHOD("flatteno", "out"), &MLPPMatrix::flatteno);
ClassDB::bind_method(D_METHOD("mult_vec", "b"), &MLPPMatrix::mult_vec);
ClassDB::bind_method(D_METHOD("mult_veco", "b", "out"), &MLPPMatrix::mult_veco);
ClassDB::bind_method(D_METHOD("add_vec", "b"), &MLPPMatrix::add_vec);
ClassDB::bind_method(D_METHOD("add_vecn", "b"), &MLPPMatrix::add_vecn);
ClassDB::bind_method(D_METHOD("add_vecb", "A", "b"), &MLPPMatrix::add_vecb);
ClassDB::bind_method(D_METHOD("outer_product", "a", "b"), &MLPPMatrix::outer_product);
ClassDB::bind_method(D_METHOD("outer_productn", "a", "b"), &MLPPMatrix::outer_productn);
ClassDB::bind_method(D_METHOD("set_diagonal", "a"), &MLPPMatrix::set_diagonal);
ClassDB::bind_method(D_METHOD("set_diagonaln", "a"), &MLPPMatrix::set_diagonaln);
ClassDB::bind_method(D_METHOD("diagonal_zeroed", "a"), &MLPPMatrix::diagonal_zeroed);
ClassDB::bind_method(D_METHOD("diagonal_zeroedn", "a"), &MLPPMatrix::diagonal_zeroedn);
}