mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-09 17:39:37 +01:00
407 lines
13 KiB
C++
407 lines
13 KiB
C++
//
|
|
// Reg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 1/16/21.
|
|
//
|
|
|
|
#include "cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include <cmath>
|
|
#include <iostream>
|
|
|
|
|
|
double MLPPCost::MSE(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]);
|
|
}
|
|
return sum / 2 * y_hat.size();
|
|
}
|
|
|
|
double MLPPCost::MSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]);
|
|
}
|
|
}
|
|
return sum / 2 * y_hat.size();
|
|
}
|
|
|
|
std::vector<double> MLPPCost::MSEDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.subtraction(y_hat, y);
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::MSEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.subtraction(y_hat, y);
|
|
}
|
|
|
|
double MLPPCost::RMSE(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += (y_hat[i] - y[i]) * (y_hat[i] - y[i]);
|
|
}
|
|
return sqrt(sum / y_hat.size());
|
|
}
|
|
|
|
double MLPPCost::RMSE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += (y_hat[i][j] - y[i][j]) * (y_hat[i][j] - y[i][j]);
|
|
}
|
|
}
|
|
return sqrt(sum / y_hat.size());
|
|
}
|
|
|
|
std::vector<double> MLPPCost::RMSEDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarMultiply(1 / (2 * sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::RMSEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarMultiply(1 / (2 / sqrt(MSE(y_hat, y))), MSEDeriv(y_hat, y));
|
|
}
|
|
|
|
double MLPPCost::MAE(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += abs((y_hat[i] - y[i]));
|
|
}
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
double MLPPCost::MAE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += abs((y_hat[i][j] - y[i][j]));
|
|
}
|
|
}
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
std::vector<double> MLPPCost::MAEDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
std::vector<double> deriv;
|
|
deriv.resize(y_hat.size());
|
|
for (int i = 0; i < deriv.size(); i++) {
|
|
if (y_hat[i] < 0) {
|
|
deriv[i] = -1;
|
|
} else if (y_hat[i] == 0) {
|
|
deriv[i] = 0;
|
|
} else {
|
|
deriv[i] = 1;
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::MAEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
std::vector<std::vector<double>> deriv;
|
|
deriv.resize(y_hat.size());
|
|
for (int i = 0; i < deriv.size(); i++) {
|
|
deriv.resize(y_hat[i].size());
|
|
}
|
|
for (int i = 0; i < deriv.size(); i++) {
|
|
for (int j = 0; j < deriv[i].size(); j++) {
|
|
if (y_hat[i][j] < 0) {
|
|
deriv[i][j] = -1;
|
|
} else if (y_hat[i][j] == 0) {
|
|
deriv[i][j] = 0;
|
|
} else {
|
|
deriv[i][j] = 1;
|
|
}
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
double MLPPCost::MBE(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += (y_hat[i] - y[i]);
|
|
}
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
double MLPPCost::MBE(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += (y_hat[i][j] - y[i][j]);
|
|
}
|
|
}
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
std::vector<double> MLPPCost::MBEDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.onevec(y_hat.size());
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::MBEDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.onemat(y_hat.size(), y_hat[0].size());
|
|
}
|
|
|
|
double MLPPCost::LogLoss(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
double eps = 1e-8;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += -(y[i] * std::log(y_hat[i] + eps) + (1 - y[i]) * std::log(1 - y_hat[i] + eps));
|
|
}
|
|
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
double MLPPCost::LogLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
double eps = 1e-8;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += -(y[i][j] * std::log(y_hat[i][j] + eps) + (1 - y[i][j]) * std::log(1 - y_hat[i][j] + eps));
|
|
}
|
|
}
|
|
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
std::vector<double> MLPPCost::LogLossDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::LogLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.addition(alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat)), alg.elementWiseDivision(alg.scalarMultiply(-1, alg.scalarAdd(-1, y)), alg.scalarMultiply(-1, alg.scalarAdd(-1, y_hat))));
|
|
}
|
|
|
|
double MLPPCost::CrossEntropy(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += y[i] * std::log(y_hat[i]);
|
|
}
|
|
|
|
return -1 * sum;
|
|
}
|
|
|
|
double MLPPCost::CrossEntropy(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += y[i][j] * std::log(y_hat[i][j]);
|
|
}
|
|
}
|
|
|
|
return -1 * sum;
|
|
}
|
|
|
|
std::vector<double> MLPPCost::CrossEntropyDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::CrossEntropyDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarMultiply(-1, alg.elementWiseDivision(y, y_hat));
|
|
}
|
|
|
|
double MLPPCost::HuberLoss(std::vector<double> y_hat, std::vector<double> y, double delta) {
|
|
MLPPLinAlg alg;
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
if (abs(y[i] - y_hat[i]) <= delta) {
|
|
sum += (y[i] - y_hat[i]) * (y[i] - y_hat[i]);
|
|
} else {
|
|
sum += 2 * delta * abs(y[i] - y_hat[i]) - delta * delta;
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
double MLPPCost::HuberLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double delta) {
|
|
MLPPLinAlg alg;
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
if (abs(y[i][j] - y_hat[i][j]) <= delta) {
|
|
sum += (y[i][j] - y_hat[i][j]) * (y[i][j] - y_hat[i][j]);
|
|
} else {
|
|
sum += 2 * delta * abs(y[i][j] - y_hat[i][j]) - delta * delta;
|
|
}
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
std::vector<double> MLPPCost::HuberLossDeriv(std::vector<double> y_hat, std::vector<double> y, double delta) {
|
|
MLPPLinAlg alg;
|
|
double sum = 0;
|
|
std::vector<double> deriv;
|
|
deriv.resize(y_hat.size());
|
|
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
if (abs(y[i] - y_hat[i]) <= delta) {
|
|
deriv.push_back(-(y[i] - y_hat[i]));
|
|
} else {
|
|
if (y_hat[i] > 0 || y_hat[i] < 0) {
|
|
deriv.push_back(2 * delta * (y_hat[i] / abs(y_hat[i])));
|
|
} else {
|
|
deriv.push_back(0);
|
|
}
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::HuberLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double delta) {
|
|
MLPPLinAlg alg;
|
|
double sum = 0;
|
|
std::vector<std::vector<double>> deriv;
|
|
deriv.resize(y_hat.size());
|
|
for (int i = 0; i < deriv.size(); i++) {
|
|
deriv[i].resize(y_hat[i].size());
|
|
}
|
|
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
if (abs(y[i][j] - y_hat[i][j]) <= delta) {
|
|
deriv[i].push_back(-(y[i][j] - y_hat[i][j]));
|
|
} else {
|
|
if (y_hat[i][j] > 0 || y_hat[i][j] < 0) {
|
|
deriv[i].push_back(2 * delta * (y_hat[i][j] / abs(y_hat[i][j])));
|
|
} else {
|
|
deriv[i].push_back(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
double MLPPCost::HingeLoss(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += fmax(0, 1 - y[i] * y_hat[i]);
|
|
}
|
|
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
double MLPPCost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += fmax(0, 1 - y[i][j] * y_hat[i][j]);
|
|
}
|
|
}
|
|
|
|
return sum / y_hat.size();
|
|
}
|
|
|
|
std::vector<double> MLPPCost::HingeLossDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
std::vector<double> deriv;
|
|
deriv.resize(y_hat.size());
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
if (1 - y[i] * y_hat[i] > 0) {
|
|
deriv[i] = -y[i];
|
|
} else {
|
|
deriv[i] = 0;
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::HingeLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
std::vector<std::vector<double>> deriv;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
if (1 - y[i][j] * y_hat[i][j] > 0) {
|
|
deriv[i][j] = -y[i][j];
|
|
} else {
|
|
deriv[i][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
return deriv;
|
|
}
|
|
|
|
double MLPPCost::WassersteinLoss(std::vector<double> y_hat, std::vector<double> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
sum += y_hat[i] * y[i];
|
|
}
|
|
return -sum / y_hat.size();
|
|
}
|
|
|
|
double MLPPCost::WassersteinLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
double sum = 0;
|
|
for (int i = 0; i < y_hat.size(); i++) {
|
|
for (int j = 0; j < y_hat[i].size(); j++) {
|
|
sum += y_hat[i][j] * y[i][j];
|
|
}
|
|
}
|
|
return -sum / y_hat.size();
|
|
}
|
|
|
|
std::vector<double> MLPPCost::WassersteinLossDeriv(std::vector<double> y_hat, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarMultiply(-1, y); // Simple.
|
|
}
|
|
|
|
std::vector<std::vector<double>> MLPPCost::WassersteinLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y) {
|
|
MLPPLinAlg alg;
|
|
return alg.scalarMultiply(-1, y); // Simple.
|
|
}
|
|
|
|
double MLPPCost::HingeLoss(std::vector<double> y_hat, std::vector<double> y, std::vector<double> weights, double C) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
|
|
}
|
|
double MLPPCost::HingeLoss(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, std::vector<std::vector<double>> weights, double C) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
return C * HingeLoss(y_hat, y) + regularization.regTerm(weights, 1, 0, "Ridge");
|
|
}
|
|
|
|
std::vector<double> MLPPCost::HingeLossDeriv(std::vector<double> y_hat, std::vector<double> y, double C) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
|
|
}
|
|
std::vector<std::vector<double>> MLPPCost::HingeLossDeriv(std::vector<std::vector<double>> y_hat, std::vector<std::vector<double>> y, double C) {
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
return alg.scalarMultiply(C, HingeLossDeriv(y_hat, y));
|
|
}
|
|
|
|
double MLPPCost::dualFormSVM(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<double>> Y = alg.diag(y); // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.
|
|
std::vector<std::vector<double>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations.
|
|
std::vector<std::vector<double>> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y);
|
|
double alphaQ = alg.matmult(alg.matmult({ alpha }, Q), alg.transpose({ alpha }))[0][0];
|
|
std::vector<double> one = alg.onevec(alpha.size());
|
|
|
|
return -alg.dot(one, alpha) + 0.5 * alphaQ;
|
|
}
|
|
|
|
std::vector<double> MLPPCost::dualFormSVMDeriv(std::vector<double> alpha, std::vector<std::vector<double>> X, std::vector<double> y) {
|
|
MLPPLinAlg alg;
|
|
std::vector<std::vector<double>> Y = alg.zeromat(y.size(), y.size());
|
|
for (int i = 0; i < y.size(); i++) {
|
|
Y[i][i] = y[i]; // Y is a diagnoal matrix. Y[i][j] = y[i] if i = i, else Y[i][j] = 0. Yt = Y.
|
|
}
|
|
std::vector<std::vector<double>> K = alg.matmult(X, alg.transpose(X)); // TO DO: DON'T forget to add non-linear kernelizations.
|
|
std::vector<std::vector<double>> Q = alg.matmult(alg.matmult(alg.transpose(Y), K), Y);
|
|
std::vector<double> alphaQDeriv = alg.mat_vec_mult(Q, alpha);
|
|
std::vector<double> one = alg.onevec(alpha.size());
|
|
|
|
return alg.subtraction(alphaQDeriv, one);
|
|
}
|