1
0
mirror of https://github.com/Relintai/pmlpp.git synced 2025-01-09 17:39:37 +01:00
pmlpp/mlpp/transforms/transforms_old.cpp

59 lines
1.3 KiB
C++

//
// Transforms.cpp
//
// Created by Marc Melikyan on 11/13/20.
//
#include "transforms_old.h"
#include "../lin_alg/lin_alg_old.h"
#include "core/int_types.h"
#include <cmath>
#include <iostream>
#include <string>
#ifndef M_PI
#define M_PI 3.141592653
#endif
// DCT ii.
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
std::vector<std::vector<real_t>> MLPPTransformsOld::discreteCosineTransform(std::vector<std::vector<real_t>> A) {
MLPPLinAlgOld alg;
A = alg.scalarAdd(-128, A); // Center around 0.
std::vector<std::vector<real_t>> B;
B.resize(A.size());
for (uint32_t i = 0; i < B.size(); i++) {
B[i].resize(A[i].size());
}
int M = A.size();
for (uint32_t i = 0; i < B.size(); i++) {
for (uint32_t j = 0; j < B[i].size(); j++) {
real_t sum = 0;
real_t alphaI;
if (i == 0) {
alphaI = 1 / std::sqrt(M);
} else {
alphaI = std::sqrt(real_t(2) / real_t(M));
}
real_t alphaJ;
if (j == 0) {
alphaJ = 1 / std::sqrt(M);
} else {
alphaJ = std::sqrt(real_t(2) / real_t(M));
}
for (uint32_t k = 0; k < B.size(); k++) {
for (uint32_t f = 0; f < B[k].size(); f++) {
sum += A[k][f] * std::cos((M_PI * i * (2 * k + 1)) / (2 * M)) * std::cos((M_PI * j * (2 * f + 1)) / (2 * M));
}
}
B[i][j] = sum;
B[i][j] *= alphaI * alphaJ;
}
}
return B;
}