mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-05 16:59:37 +01:00
262 lines
9.0 KiB
C++
262 lines
9.0 KiB
C++
//
|
|
// MANN.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "mann.h"
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
|
|
/*
|
|
Ref<MLPPMatrix> MLPPMANN::get_input_set() {
|
|
return input_set;
|
|
}
|
|
void MLPPMANN::set_input_set(const Ref<MLPPMatrix> &val) {
|
|
input_set = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPMANN::get_output_set() {
|
|
return output_set;
|
|
}
|
|
void MLPPMANN::set_output_set(const Ref<MLPPMatrix> &val) {
|
|
output_set = val;
|
|
|
|
_initialized = false;
|
|
}
|
|
*/
|
|
|
|
std::vector<std::vector<real_t>> MLPPMANN::model_set_test(std::vector<std::vector<real_t>> X) {
|
|
ERR_FAIL_COND_V(!_initialized, std::vector<std::vector<real_t>>());
|
|
|
|
if (!_network.empty()) {
|
|
_network[0].input = X;
|
|
_network[0].forwardPass();
|
|
|
|
for (uint32_t i = 1; i < _network.size(); i++) {
|
|
_network[i].input = _network[i - 1].a;
|
|
_network[i].forwardPass();
|
|
}
|
|
_output_layer->input = _network[_network.size() - 1].a;
|
|
} else {
|
|
_output_layer->input = X;
|
|
}
|
|
|
|
_output_layer->forwardPass();
|
|
|
|
return _output_layer->a;
|
|
}
|
|
|
|
std::vector<real_t> MLPPMANN::model_test(std::vector<real_t> x) {
|
|
ERR_FAIL_COND_V(!_initialized, std::vector<real_t>());
|
|
|
|
if (!_network.empty()) {
|
|
_network[0].Test(x);
|
|
for (uint32_t i = 1; i < _network.size(); i++) {
|
|
_network[i].Test(_network[i - 1].a_test);
|
|
}
|
|
_output_layer->Test(_network[_network.size() - 1].a_test);
|
|
} else {
|
|
_output_layer->Test(x);
|
|
}
|
|
return _output_layer->a_test;
|
|
}
|
|
|
|
void MLPPMANN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
|
ERR_FAIL_COND(!_initialized);
|
|
|
|
MLPPCost mlpp_cost;
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
forward_pass();
|
|
|
|
while (true) {
|
|
cost_prev = cost(_y_hat, _output_set);
|
|
|
|
if (_output_layer->activation == "Softmax") {
|
|
_output_layer->delta = alg.subtraction(_y_hat, _output_set);
|
|
} else {
|
|
auto costDeriv = _output_layer->costDeriv_map[_output_layer->cost];
|
|
auto outputAvn = _output_layer->activation_map[_output_layer->activation];
|
|
_output_layer->delta = alg.hadamard_product((mlpp_cost.*costDeriv)(_y_hat, _output_set), (avn.*outputAvn)(_output_layer->z, 1));
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> outputWGrad = alg.matmult(alg.transpose(_output_layer->input), _output_layer->delta);
|
|
|
|
_output_layer->weights = alg.subtraction(_output_layer->weights, alg.scalarMultiply(learning_rate / _n, outputWGrad));
|
|
_output_layer->weights = regularization.regWeights(_output_layer->weights, _output_layer->lambda, _output_layer->alpha, _output_layer->reg);
|
|
_output_layer->bias = alg.subtractMatrixRows(_output_layer->bias, alg.scalarMultiply(learning_rate / _n, _output_layer->delta));
|
|
|
|
if (!_network.empty()) {
|
|
auto hiddenLayerAvn = _network[_network.size() - 1].activation_map[_network[_network.size() - 1].activation];
|
|
_network[_network.size() - 1].delta = alg.hadamard_product(alg.matmult(_output_layer->delta, alg.transpose(_output_layer->weights)), (avn.*hiddenLayerAvn)(_network[_network.size() - 1].z, true));
|
|
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(_network[_network.size() - 1].input), _network[_network.size() - 1].delta);
|
|
|
|
_network[_network.size() - 1].weights = alg.subtraction(_network[_network.size() - 1].weights, alg.scalarMultiply(learning_rate / _n, hiddenLayerWGrad));
|
|
_network[_network.size() - 1].weights = regularization.regWeights(_network[_network.size() - 1].weights, _network[_network.size() - 1].lambda, _network[_network.size() - 1].alpha, _network[_network.size() - 1].reg);
|
|
_network[_network.size() - 1].bias = alg.subtractMatrixRows(_network[_network.size() - 1].bias, alg.scalarMultiply(learning_rate / _n, _network[_network.size() - 1].delta));
|
|
|
|
for (int i = _network.size() - 2; i >= 0; i--) {
|
|
hiddenLayerAvn = _network[i].activation_map[_network[i].activation];
|
|
_network[i].delta = alg.hadamard_product(alg.matmult(_network[i + 1].delta, _network[i + 1].weights), (avn.*hiddenLayerAvn)(_network[i].z, true));
|
|
hiddenLayerWGrad = alg.matmult(alg.transpose(_network[i].input), _network[i].delta);
|
|
_network[i].weights = alg.subtraction(_network[i].weights, alg.scalarMultiply(learning_rate / _n, hiddenLayerWGrad));
|
|
_network[i].weights = regularization.regWeights(_network[i].weights, _network[i].lambda, _network[i].alpha, _network[i].reg);
|
|
_network[i].bias = alg.subtractMatrixRows(_network[i].bias, alg.scalarMultiply(learning_rate / _n, _network[i].delta));
|
|
}
|
|
}
|
|
|
|
forward_pass();
|
|
|
|
if (ui) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, cost(_y_hat, _output_set));
|
|
std::cout << "Layer " << _network.size() + 1 << ": " << std::endl;
|
|
MLPPUtilities::UI(_output_layer->weights, _output_layer->bias);
|
|
if (!_network.empty()) {
|
|
std::cout << "Layer " << _network.size() << ": " << std::endl;
|
|
for (int i = _network.size() - 1; i >= 0; i--) {
|
|
std::cout << "Layer " << i + 1 << ": " << std::endl;
|
|
MLPPUtilities::UI(_network[i].weights, _network[i].bias);
|
|
}
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t MLPPMANN::score() {
|
|
ERR_FAIL_COND_V(!_initialized, 0);
|
|
|
|
MLPPUtilities util;
|
|
|
|
forward_pass();
|
|
|
|
return util.performance(_y_hat, _output_set);
|
|
}
|
|
|
|
void MLPPMANN::save(std::string fileName) {
|
|
ERR_FAIL_COND(!_initialized);
|
|
|
|
MLPPUtilities util;
|
|
if (!_network.empty()) {
|
|
util.saveParameters(fileName, _network[0].weights, _network[0].bias, false, 1);
|
|
for (uint32_t i = 1; i < _network.size(); i++) {
|
|
util.saveParameters(fileName, _network[i].weights, _network[i].bias, true, i + 1);
|
|
}
|
|
util.saveParameters(fileName, _output_layer->weights, _output_layer->bias, true, _network.size() + 1);
|
|
} else {
|
|
util.saveParameters(fileName, _output_layer->weights, _output_layer->bias, false, _network.size() + 1);
|
|
}
|
|
}
|
|
|
|
void MLPPMANN::add_layer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
|
if (_network.empty()) {
|
|
_network.push_back(MLPPOldHiddenLayer(n_hidden, activation, _input_set, weightInit, reg, lambda, alpha));
|
|
_network[0].forwardPass();
|
|
} else {
|
|
_network.push_back(MLPPOldHiddenLayer(n_hidden, activation, _network[_network.size() - 1].a, weightInit, reg, lambda, alpha));
|
|
_network[_network.size() - 1].forwardPass();
|
|
}
|
|
}
|
|
|
|
void MLPPMANN::add_output_layer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
|
if (!_network.empty()) {
|
|
_output_layer = new MLPPOldMultiOutputLayer(_n_output, _network[0].n_hidden, activation, loss, _network[_network.size() - 1].a, weightInit, reg, lambda, alpha);
|
|
} else {
|
|
_output_layer = new MLPPOldMultiOutputLayer(_n_output, _k, activation, loss, _input_set, weightInit, reg, lambda, alpha);
|
|
}
|
|
}
|
|
|
|
bool MLPPMANN::is_initialized() {
|
|
return _initialized;
|
|
}
|
|
|
|
void MLPPMANN::initialize() {
|
|
if (_initialized) {
|
|
return;
|
|
}
|
|
|
|
//ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0);
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPMANN::MLPPMANN(std::vector<std::vector<real_t>> p_input_set, std::vector<std::vector<real_t>> p_output_set) {
|
|
_input_set = p_input_set;
|
|
_output_set = p_output_set;
|
|
_n = _input_set.size();
|
|
_k = _input_set[0].size();
|
|
_n_output = _output_set[0].size();
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
MLPPMANN::MLPPMANN() {
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPMANN::~MLPPMANN() {
|
|
delete _output_layer;
|
|
}
|
|
|
|
real_t MLPPMANN::cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
|
MLPPReg regularization;
|
|
class MLPPCost cost;
|
|
real_t totalRegTerm = 0;
|
|
|
|
auto cost_function = _output_layer->cost_map[_output_layer->cost];
|
|
if (!_network.empty()) {
|
|
for (uint32_t i = 0; i < _network.size() - 1; i++) {
|
|
totalRegTerm += regularization.regTerm(_network[i].weights, _network[i].lambda, _network[i].alpha, _network[i].reg);
|
|
}
|
|
}
|
|
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(_output_layer->weights, _output_layer->lambda, _output_layer->alpha, _output_layer->reg);
|
|
}
|
|
|
|
void MLPPMANN::forward_pass() {
|
|
if (!_network.empty()) {
|
|
_network[0].input = _input_set;
|
|
_network[0].forwardPass();
|
|
|
|
for (uint32_t i = 1; i < _network.size(); i++) {
|
|
_network[i].input = _network[i - 1].a;
|
|
_network[i].forwardPass();
|
|
}
|
|
_output_layer->input = _network[_network.size() - 1].a;
|
|
} else {
|
|
_output_layer->input = _input_set;
|
|
}
|
|
|
|
_output_layer->forwardPass();
|
|
_y_hat = _output_layer->a;
|
|
}
|
|
|
|
void MLPPMANN::_bind_methods() {
|
|
/*
|
|
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMANN::get_input_set);
|
|
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMANN::set_input_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMANN::get_output_set);
|
|
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMANN::set_output_set);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_output_set", "get_output_set");
|
|
*/
|
|
}
|