mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
59 lines
2.0 KiB
C++
59 lines
2.0 KiB
C++
|
|
#ifndef MLPP_LIN_REG_H
|
|
#define MLPP_LIN_REG_H
|
|
|
|
//
|
|
// LinReg.hpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
class MLPPLinReg {
|
|
public:
|
|
MLPPLinReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
|
|
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
|
|
double modelTest(std::vector<double> x);
|
|
void NewtonRaphson(double learning_rate, int max_epoch, bool UI);
|
|
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
|
|
void SGD(double learning_rate, int max_epoch, bool UI = 1);
|
|
|
|
void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool UI = 1);
|
|
void NAG(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool UI = 1);
|
|
void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1);
|
|
void Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI = 1);
|
|
void Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
void Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
void Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
|
|
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
|
void normalEquation();
|
|
double score();
|
|
void save(std::string fileName);
|
|
|
|
private:
|
|
double Cost(std::vector<double> y_hat, std::vector<double> y);
|
|
|
|
std::vector<double> Evaluate(std::vector<std::vector<double>> X);
|
|
double Evaluate(std::vector<double> x);
|
|
void forwardPass();
|
|
|
|
std::vector<std::vector<double>> inputSet;
|
|
std::vector<double> outputSet;
|
|
std::vector<double> y_hat;
|
|
std::vector<double> weights;
|
|
double bias;
|
|
|
|
int n;
|
|
int k;
|
|
|
|
// Regularization Params
|
|
std::string reg;
|
|
int lambda;
|
|
int alpha; /* This is the controlling param for Elastic Net*/
|
|
};
|
|
|
|
#endif /* LinReg_hpp */
|