mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-12 18:01:10 +01:00
365 lines
11 KiB
C++
365 lines
11 KiB
C++
//
|
|
// Reg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 1/16/21.
|
|
//
|
|
|
|
#include "reg.h"
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "../activation/activation.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
real_t MLPPReg::reg_termv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType p_reg) {
|
|
int size = weights->size();
|
|
const real_t *weights_ptr = weights->ptr();
|
|
|
|
if (p_reg == REGULARIZATION_TYPE_RIDGE) {
|
|
real_t reg = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
real_t wi = weights_ptr[i];
|
|
reg += wi * wi;
|
|
}
|
|
return reg * lambda / 2;
|
|
} else if (p_reg == REGULARIZATION_TYPE_LASSO) {
|
|
real_t reg = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
reg += ABS(weights_ptr[i]);
|
|
}
|
|
return reg * lambda;
|
|
} else if (p_reg == REGULARIZATION_TYPE_ELASTIC_NET) {
|
|
real_t reg = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
real_t wi = weights_ptr[i];
|
|
reg += alpha * ABS(wi); // Lasso Reg
|
|
reg += ((1 - alpha) / 2) * wi * wi; // Ridge Reg
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
real_t MLPPReg::reg_termm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType p_reg) {
|
|
int size = weights->data_size();
|
|
const real_t *weights_ptr = weights->ptr();
|
|
|
|
if (p_reg == REGULARIZATION_TYPE_RIDGE) {
|
|
real_t reg = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
real_t wi = weights_ptr[i];
|
|
reg += wi * wi;
|
|
}
|
|
return reg * lambda / 2;
|
|
} else if (p_reg == REGULARIZATION_TYPE_LASSO) {
|
|
real_t reg = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
reg += ABS(weights_ptr[i]);
|
|
}
|
|
return reg * lambda;
|
|
} else if (p_reg == REGULARIZATION_TYPE_ELASTIC_NET) {
|
|
real_t reg = 0;
|
|
for (int i = 0; i < size; ++i) {
|
|
real_t wi = weights_ptr[i];
|
|
reg += alpha * ABS(wi); // Lasso Reg
|
|
reg += ((1 - alpha) / 2) * wi * wi; // Ridge Reg
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPReg::reg_weightsv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType p_reg) {
|
|
MLPPLinAlg alg;
|
|
|
|
if (p_reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) {
|
|
return reg_deriv_termv(weights, lambda, alpha, p_reg);
|
|
}
|
|
|
|
return alg.subtractionnv(weights, reg_deriv_termv(weights, lambda, alpha, p_reg));
|
|
|
|
// for(int i = 0; i < weights.size(); i++){
|
|
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
|
|
// }
|
|
// return weights;
|
|
}
|
|
Ref<MLPPMatrix> MLPPReg::reg_weightsm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg) {
|
|
MLPPLinAlg alg;
|
|
|
|
if (reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) {
|
|
return reg_deriv_termm(weights, lambda, alpha, reg);
|
|
}
|
|
|
|
return alg.subtractionm(weights, reg_deriv_termm(weights, lambda, alpha, reg));
|
|
|
|
// for(int i = 0; i < weights.size(); i++){
|
|
// for(int j = 0; j < weights[i].size(); j++){
|
|
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
|
|
// }
|
|
// }
|
|
// return weights;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPReg::reg_deriv_termv(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg) {
|
|
Ref<MLPPVector> reg_driv;
|
|
reg_driv.instance();
|
|
|
|
int size = weights->size();
|
|
|
|
reg_driv->resize(size);
|
|
|
|
real_t *reg_driv_ptr = reg_driv->ptrw();
|
|
|
|
for (int i = 0; i < size; ++i) {
|
|
reg_driv_ptr[i] = reg_deriv_termvr(weights, lambda, alpha, reg, i);
|
|
}
|
|
|
|
return reg_driv;
|
|
}
|
|
Ref<MLPPMatrix> MLPPReg::reg_deriv_termm(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg) {
|
|
Ref<MLPPMatrix> reg_driv;
|
|
reg_driv.instance();
|
|
|
|
Size2i size = weights->size();
|
|
|
|
reg_driv->resize(size);
|
|
|
|
real_t *reg_driv_ptr = reg_driv->ptrw();
|
|
|
|
for (int i = 0; i < size.y; ++i) {
|
|
for (int j = 0; j < size.x; ++j) {
|
|
reg_driv_ptr[reg_driv->calculate_index(i, j)] = reg_deriv_termmr(weights, lambda, alpha, reg, i, j);
|
|
}
|
|
}
|
|
|
|
return reg_driv;
|
|
}
|
|
|
|
MLPPReg::MLPPReg() {
|
|
}
|
|
MLPPReg::~MLPPReg() {
|
|
}
|
|
|
|
void MLPPReg::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("reg_termv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_termv);
|
|
ClassDB::bind_method(D_METHOD("reg_termm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_termm);
|
|
|
|
ClassDB::bind_method(D_METHOD("reg_weightsv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_weightsv);
|
|
ClassDB::bind_method(D_METHOD("reg_weightsm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_weightsm);
|
|
|
|
ClassDB::bind_method(D_METHOD("reg_deriv_termv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_deriv_termv);
|
|
ClassDB::bind_method(D_METHOD("reg_deriv_termm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_deriv_termm);
|
|
|
|
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_NONE);
|
|
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_RIDGE);
|
|
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_LASSO);
|
|
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_ELASTIC_NET);
|
|
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_WEIGHT_CLIPPING);
|
|
}
|
|
|
|
real_t MLPPReg::reg_deriv_termvr(const Ref<MLPPVector> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg, int j) {
|
|
MLPPActivation act;
|
|
|
|
real_t wj = weights->get_element(j);
|
|
|
|
if (reg == REGULARIZATION_TYPE_RIDGE) {
|
|
return lambda * wj;
|
|
} else if (reg == REGULARIZATION_TYPE_LASSO) {
|
|
return lambda * act.sign(wj);
|
|
} else if (reg == REGULARIZATION_TYPE_ELASTIC_NET) {
|
|
return alpha * lambda * act.sign(wj) + (1 - alpha) * lambda * wj;
|
|
} else if (reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) { // Preparation for Wasserstein GANs.
|
|
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
|
|
// alpha > lambda.
|
|
if (wj > alpha) {
|
|
return alpha;
|
|
} else if (wj < lambda) {
|
|
return lambda;
|
|
} else {
|
|
return wj;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
real_t MLPPReg::reg_deriv_termmr(const Ref<MLPPMatrix> &weights, real_t lambda, real_t alpha, MLPPReg::RegularizationType reg, int i, int j) {
|
|
MLPPActivation act;
|
|
|
|
real_t wj = weights->get_element(i, j);
|
|
|
|
if (reg == REGULARIZATION_TYPE_RIDGE) {
|
|
return lambda * wj;
|
|
} else if (reg == REGULARIZATION_TYPE_LASSO) {
|
|
return lambda * act.sign(wj);
|
|
} else if (reg == REGULARIZATION_TYPE_ELASTIC_NET) {
|
|
return alpha * lambda * act.sign(wj) + (1 - alpha) * lambda * wj;
|
|
} else if (reg == REGULARIZATION_TYPE_WEIGHT_CLIPPING) { // Preparation for Wasserstein GANs.
|
|
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
|
|
// alpha > lambda.
|
|
if (wj > alpha) {
|
|
return alpha;
|
|
} else if (wj < lambda) {
|
|
return lambda;
|
|
} else {
|
|
return wj;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
real_t MLPPReg::regTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string p_reg) {
|
|
if (p_reg == "Ridge") {
|
|
real_t reg = 0;
|
|
for (uint32_t i = 0; i < weights.size(); i++) {
|
|
reg += weights[i] * weights[i];
|
|
}
|
|
return reg * lambda / 2;
|
|
} else if (p_reg == "Lasso") {
|
|
real_t reg = 0;
|
|
for (uint32_t i = 0; i < weights.size(); i++) {
|
|
reg += abs(weights[i]);
|
|
}
|
|
return reg * lambda;
|
|
} else if (p_reg == "ElasticNet") {
|
|
real_t reg = 0;
|
|
for (uint32_t i = 0; i < weights.size(); i++) {
|
|
reg += alpha * abs(weights[i]); // Lasso Reg
|
|
reg += ((1 - alpha) / 2) * weights[i] * weights[i]; // Ridge Reg
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
real_t MLPPReg::regTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string p_reg) {
|
|
if (p_reg == "Ridge") {
|
|
real_t reg = 0;
|
|
for (uint32_t i = 0; i < weights.size(); i++) {
|
|
for (uint32_t j = 0; j < weights[i].size(); j++) {
|
|
reg += weights[i][j] * weights[i][j];
|
|
}
|
|
}
|
|
return reg * lambda / 2;
|
|
} else if (p_reg == "Lasso") {
|
|
real_t reg = 0;
|
|
for (uint32_t i = 0; i < weights.size(); i++) {
|
|
for (uint32_t j = 0; j < weights[i].size(); j++) {
|
|
reg += abs(weights[i][j]);
|
|
}
|
|
}
|
|
return reg * lambda;
|
|
} else if (p_reg == "ElasticNet") {
|
|
real_t reg = 0;
|
|
for (uint32_t i = 0; i < weights.size(); i++) {
|
|
for (uint32_t j = 0; j < weights[i].size(); j++) {
|
|
reg += alpha * abs(weights[i][j]); // Lasso Reg
|
|
reg += ((1 - alpha) / 2) * weights[i][j] * weights[i][j]; // Ridge Reg
|
|
}
|
|
}
|
|
return reg * lambda;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
std::vector<real_t> MLPPReg::regWeights(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
|
|
MLPPLinAlg alg;
|
|
if (reg == "WeightClipping") {
|
|
return regDerivTerm(weights, lambda, alpha, reg);
|
|
}
|
|
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
|
|
// for(int i = 0; i < weights.size(); i++){
|
|
// weights[i] -= regDerivTerm(weights, lambda, alpha, reg, i);
|
|
// }
|
|
// return weights;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPReg::regWeights(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
|
|
MLPPLinAlg alg;
|
|
if (reg == "WeightClipping") {
|
|
return regDerivTerm(weights, lambda, alpha, reg);
|
|
}
|
|
return alg.subtraction(weights, regDerivTerm(weights, lambda, alpha, reg));
|
|
// for(int i = 0; i < weights.size(); i++){
|
|
// for(int j = 0; j < weights[i].size(); j++){
|
|
// weights[i][j] -= regDerivTerm(weights, lambda, alpha, reg, i, j);
|
|
// }
|
|
// }
|
|
// return weights;
|
|
}
|
|
|
|
std::vector<real_t> MLPPReg::regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg) {
|
|
std::vector<real_t> regDeriv;
|
|
regDeriv.resize(weights.size());
|
|
|
|
for (uint32_t i = 0; i < regDeriv.size(); i++) {
|
|
regDeriv[i] = regDerivTerm(weights, lambda, alpha, reg, i);
|
|
}
|
|
return regDeriv;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPReg::regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg) {
|
|
std::vector<std::vector<real_t>> regDeriv;
|
|
regDeriv.resize(weights.size());
|
|
for (uint32_t i = 0; i < regDeriv.size(); i++) {
|
|
regDeriv[i].resize(weights[0].size());
|
|
}
|
|
|
|
for (uint32_t i = 0; i < regDeriv.size(); i++) {
|
|
for (uint32_t j = 0; j < regDeriv[i].size(); j++) {
|
|
regDeriv[i][j] = regDerivTerm(weights, lambda, alpha, reg, i, j);
|
|
}
|
|
}
|
|
return regDeriv;
|
|
}
|
|
|
|
real_t MLPPReg::regDerivTerm(std::vector<real_t> weights, real_t lambda, real_t alpha, std::string reg, int j) {
|
|
MLPPActivation act;
|
|
if (reg == "Ridge") {
|
|
return lambda * weights[j];
|
|
} else if (reg == "Lasso") {
|
|
return lambda * act.sign(weights[j]);
|
|
} else if (reg == "ElasticNet") {
|
|
return alpha * lambda * act.sign(weights[j]) + (1 - alpha) * lambda * weights[j];
|
|
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
|
|
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
|
|
// alpha > lambda.
|
|
if (weights[j] > alpha) {
|
|
return alpha;
|
|
} else if (weights[j] < lambda) {
|
|
return lambda;
|
|
} else {
|
|
return weights[j];
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
real_t MLPPReg::regDerivTerm(std::vector<std::vector<real_t>> weights, real_t lambda, real_t alpha, std::string reg, int i, int j) {
|
|
MLPPActivation act;
|
|
if (reg == "Ridge") {
|
|
return lambda * weights[i][j];
|
|
} else if (reg == "Lasso") {
|
|
return lambda * act.sign(weights[i][j]);
|
|
} else if (reg == "ElasticNet") {
|
|
return alpha * lambda * act.sign(weights[i][j]) + (1 - alpha) * lambda * weights[i][j];
|
|
} else if (reg == "WeightClipping") { // Preparation for Wasserstein GANs.
|
|
// We assume lambda is the lower clipping threshold, while alpha is the higher clipping threshold.
|
|
// alpha > lambda.
|
|
if (weights[i][j] > alpha) {
|
|
return alpha;
|
|
} else if (weights[i][j] < lambda) {
|
|
return lambda;
|
|
} else {
|
|
return weights[i][j];
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|